

ZONING IN: South Australian Aquaculture report

2022

ZONING IN: South Australian Aquaculture Report 2022

Information current as of September 2022

© Government of South Australia 2022

Disclaimer

The Department of Primary Industries and Regions and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability and currency or otherwise. The Department of Primary Industries and Regions and its employees expressly disclaim all liability or responsibility to any person using the information or advice.

Front cover photo courtesy of Ian Gordon

All Enquiries

Department of Primary Industries and Regions 2 Hamra Avenue, West Beach SA 5024 GPO Box 1625, Adelaide SA 5001 T 08 8207 5333 E pirsa.aquaculture@sa.gov.au

Foreword

Commercial aquaculture is a relatively young industry in South Australia when compared to other primary industries, commencing in the late 1980s with Oyster farming in the Spencer Gulf. Despite its youth, the State's aquaculture sectors have diversified and become a well-established industry with a highly sought-after and valued product. Key commercial aquaculture species include Southern Bluefin Tuna, Yellowtail Kingfish, Barramundi, Oysters, Mussels and Abalone. More recently, a new and emerging marine algae (seaweed) sector has the potential to provide significant benefits for South Australia. Numerous secondary industries have also developed from the aquaculture industry, creating additional economic and employment benefits for the State, particularly in regional communities.

Aquaculture is the fastest growing livestock industry in Australia (7% growth per year), expected to increase to \$2 billion by 2027 to meet increasing global seafood demand. South Australia is in a prime position to contribute to that growth as a world leader in the ecologically sustainable development of aquaculture, with one of Australia's most comprehensive legislative frameworks in place to protect and manage the state's aquatic resources whilst encouraging investment, growth and social licence. The protection of the aquatic environment through science-based policies, ecologically sustainable development risk assessment, environmental monitoring, aquatic animal health programs and strict zoning requirements ensures South Australian seafood retains a high standard of environmental credentials.

The Government of South Australia invests significantly in research and innovation in the state's aquaculture industry. The South Australian Research and Development Institute (SARDI) is a world-class leader in seafood and aquatic species research and works closely with industry to develop and commercialise new projects. The Fisheries Research and Development Corporation (FRDC) is a significant co-funder of strategic research projects designed to further develop aquaculture management practices through improved environmental and planning knowledge, processes and technologies.

The report entitled 'ZONING IN: South Australian Aquaculture Report 2022' profiles this important industry, including production and value, and details information on current practices, management requirements and environmental monitoring per sector. This annual report demonstrates the Government's commitment to public accountability in reporting on aquaculture activity.

Hon Clare Scriven MLC

Minister for Primary Industries and Regional Development

Minister for Forest Industries

Clare Ocnoin

23/10/2022

Contents

Background	7
Purpose	7
General background	7
Scope	8
Regulatory framework	8
National Aquaculture Strategy	13
Seafood Growth Strategy for South Australia 2021-2031	13
Aquaculture activity in South Australia	13
Socio-economic data for 2020-21	13
Industry licence holders	17
Aquaculture applications processed by PIRSA	17
Aquaculture policy	17
Summary of aquaculture zone policies in South Australia	17
Aquaculture zone policy development and review 2020-21	19
Public call for aquaculture zone policy tenure 2020-21	19
Aquaculture zone policy tenure allocation overview	20
Aquaculture outside zone policies in South Australia	25
Aquaculture (Standard Lease and Licence Conditions) Policy 2022	26
Changes to the Aquaculture Act 2001	26
Tuna	27
Overview of the industry	27
Environment	28
Aquatic animal health management	31
Finfish	32
Overview of the industry	
Environment	33
Aquatic animal health management	36

Marine Abalone	37
Overview of the industry	37
Environment	37
Aquatic animal health management	38
Mussels	39
Overview of the industry	39
Environment	39
Aquatic animal health management	40
Oysters	42
Overview of the industry	42
Environment	43
Aquatic animal health management	44
Landbased	45
Overview of the industry	45
Environment	46
Aquatic animal health management	46
Marine algae (seaweed)	48
Overview of the industry	48
Tourism and education	51
Compliance outcomes	52
Aquatic animal health and biosecurity	53
Fish kill and fish health investigations	53
Industry initiatives	54
Marine debris	54
Oyster Hub project	55
Oyster basket recycling	55
Seafood certification	56
Research	57
External factors or events affecting the aquaculture industry in South Australia	60

Coronavirus (COVID-19)	60
Tuna quota	60
Mussel industry	60
Oysters	61
Contacts	62
References	62
Glossary	64
Appendix 1 Aquaculture licences held in South Australia in 2020-21 by sector	65
Appendix 2 Aquaculture zone policies in South Australia	68

Background

Purpose

This report provides a summary of aquaculture production and management in South Australia. The report broadly covers aquaculture regulation and management, aquatic animal health regulation and management, production trends, environmental monitoring, socio-economic impacts, key research activities that underpin management, broad sector trends (including species farmed) and challenges. The report presents information in such a way to address components of the Global Sustainable Seafood Initiative, grouped into two broad categories: environmental monitoring and aquatic animal health. The information presented in this report is for the general public, key stakeholders of the aquatic environment and the seafood industry.

General background

Global demand for seafood is increasing and with wild caught fisheries close to their production limits, aquaculture will play a crucial role in future seafood production (FAO 2018a). On an international scale, 49% of total seafood production was from aquaculture in 2020, a record high (FAO 2022). Worldwide expectations are that by 2030, aquaculture will produce 53% of global seafood production (FAO 2022). Australia's fishery and aquaculture industry is a minor global player, producing around 0.15% of global fishery and aquaculture supply by volume and less than 1% of world trade by value (FAO 2018b). However, the Australian industry exports a range of high unit value fishery and aquaculture products, and is often a major contributor to regional communities.

In line with the global rise in aquaculture production since the early 2000s, Australia's aquaculture sector has been steadily increasing its real value and proportional share of fisheries and aquaculture production volume and Gross Value of Production (GVP; ABARES 2020). In 2019-20, GVP of Australia's aquaculture sector increased by 10% to \$1.6 billion, accounting for 51% of total fisheries and aquaculture GVP (\$3.15 billion). In 2021-22, aquaculture GVP is expected to be the dominant sector of the seafood industry, estimated to reach a peak production value of over \$2 billion (B) for the first time (ABARES 2020).

South Australia is considered to be one of Australia's most valuable aquaculture producing states, worth \$200.1 million (M) in 2020-21 (BDO EconSearch 2022). South Australian aquaculture has a reputation for producing safe, sustainable, high quality and high value seafood products within an internationally recognised, and advanced, regulatory framework. Further advantages for aquaculture in South Australia include the availability of relatively inexpensive land, pristine environment, and freedom from many known aquatic diseases that can impact aquaculture. These characteristics create significant opportunities for growth in aquaculture activity in South Australia, including through expanding export markets, growth in trade and attracting investment to the State.

Seafood sustainability standards help ensure consistency and confidence in seafood production. There are multiple environmental and sustainability standards in the seafood industry including the Aquaculture Stewardship Council, Friend of the Sea or the Global Aquaculture Alliance. In South Australia, some seafood producers, including aquaculture operators, have already applied for and received third party certification in accordance with one or more of these standards. The Global Sustainable Seafood Initiative (GSSI) has developed a benchmark for seafood standards so that a seafood supplier can (a) know which standards meet the benchmark and (b) select one that best fits their requirements, therefore avoiding the need for dual or multiple certifications. The GSSI has the backing of the Food and Agriculture Organisation (FAO) and many countries including Australia, through the Fisheries Research and Development Corporation (FRDC). For more information see www.ourgssi.org and www.frdc.com.au.

This South Australian Aquaculture report provides a summary of the seafood certification programs achieved by the South Australian aquaculture industry. The report also provides some of the regulatory information that industry and third party accreditors may require for assessment against the GSSI benchmark.

South Australian aquaculture comprises numerous species farmed in both landbased and marine environments. They predominately include Abalone species, Barramundi, Marron, Yabbies, Silver Perch, Trout, Microalgae species, Murray Cod, Mussels, Oyster species, Southern Bluefin Tuna, Yellowtail Kingfish and more recently seaweed (no commercial production yet).

Scope

The South Australian Aquaculture Report 2022 (the report) provides an overview of marine and landbased aquaculture in South Australia within the 2020-21 financial year, using the most recent data available. The report provides information directly related to each aquaculture sector (Tuna, Finfish, Abalone, Mussels, Oysters, landbased and Tourism).

Data sources used for this report include the following:

- 2020-21 BDO EconSearch Pty Ltd (EconSearch) production and economic data (BDO EconSearch 2022)
- 2020-21 Environmental Monitoring Program (EMP) data
- 2020-21 PIRSA management activities, industry trends and external factors

Regulatory framework

General aquaculture regulation

South Australia strives to be at the forefront of aquaculture development and planning, and the <u>Aquaculture Act 2001</u> is currently the only dedicated aquaculture legislation of its kind in Australia. The Department of Primary Industries and Regions (PIRSA) is the State Government agency responsible for the regulation and management of the State's aquaculture industry.

South Australia has taken a strategic approach to regulation and seeks to proactively plan for the future growth and expansion of the industry. While competition for, and access to, South Australia's natural resources is increasing, the government is supporting the efficient and effective use of these resources through sound policies and planning and a one-stop-shop approach to aquaculture administration which involves PIRSA coordinating referrals and consultation with other government departments, key stakeholders and the community. The objects of the <u>Aquaculture Act 2001</u> are:

- to promote ecologically sustainable development of marine and inland aquaculture
- to maximise the benefits to the community from the state's aquaculture resources
- to ensure the efficient and effective regulation of the aquaculture industry.

The <u>Aquaculture Act 2001</u> establishes the broad framework for the regulation of aquaculture in South Australia by:

- defining aquaculture as the farming of aquatic organisms for the purposes of trade, business or research
- authorising aguaculture by setting the parameters within which it can occur
- enshrining the principle of ecologically sustainable development (ESD)
- providing for planning for the future of the aquaculture industry through the development/review of aquaculture zone policies
- maintaining requirements for aquaculture leases and licences.

The <u>Aquaculture Act 2001</u> provides that no one may conduct aquaculture in South Australia unless authorised to do so by an aquaculture licence. There are two types of aquaculture that occur in South Australia:

- Marine aquaculture (aquaculture occurring in State waters)
- Landbased aquaculture.

For marine aquaculture, an aquaculture lease is required to provide access to specific areas of State waters and a corresponding aquaculture licence authorises the nature of the activity conducted (e.g. species to be farmed, farming method, amount of stock permitted). For landbased aquaculture, only an aquaculture licence is required.

In South Australia, assessment of individual aquaculture licence applications follow strict guidelines. A semi-quantitative risk based assessment, based on a national best practice Ecological Sustainable Development risk assessment framework (Fletcher *et al.* 2004) is applied to determine the sustainability and outcome of each individual application. The integrity of the assessment process relies on understanding both the nature of the environment in which the intended aquaculture operation occurs and the manner in which it interacts with or changes the environment that surrounds it.

As part of the assessment process, up to 36 possible risk events that are directly relevant to potential aquaculture influences, are considered and applied to both site and regional levels. Risk events are assessed for the construction phase and ongoing activities. Some of the risks that are assessed include impacts to habitats, erosion, sedimentation, access by public, escape, disease management, chemical use, water flow, water quality, nutrient discharge, interaction with threatened and migratory species and impacts to sensitive habitats.

PIRSA also applies general guidelines to minimise environmental harm, for example aquaculture activities are not to be placed over sensitive habits (e.g. seagrass or reef) unless the appropriate mitigating strategies are in place to minimise potential environmental harm. Aquaculture activity is excluded in buffer zones around areas of conservation and heritage significance such as seal colonies, aquatic reserves, shipwrecks and national parks unless the appropriate approval from relevant authorities is secured.

All applications for aquaculture licences are reviewed for environmental issues and referred to the Environment Protection Authority (EPA) for assessment to ensure the proposal meets the objectives of the *Environment Protection Act* 1993 and associated Environment Protection Policies (EPPs). Environmental issues of interest to the EPA include protection of water quality, management of noise and air quality, solid waste management and disposal, storage, use and disposal of hazardous substances and ecological impacts from pollution.

Environmental regulation

Under the <u>Aquaculture Regulations 2016</u>, all aquaculture licence holders are required to submit an annual Environmental Monitoring Program (EMP) report to PIRSA which provides information on how they have been using the site. This information is vital to the continued sustainable management of the aquaculture industry. Information collected varies for each sector but generally includes:

- Site development and productivity (all sectors)
- Species farmed (all sectors)
- Amount of stock held on site per month (all marine)
- Feed and chemical inputs (all sectors)
- Water usage and discharge (landbased)
- Interactions with site infrastructure and marine vertebrates (all marine)
- Escape of stock (all sectors)
- Disease incidents (all sectors)
- Debris incidents (all marine)
- Waste and refuse disposal (all sectors)

Environmentally responsible infrastructure construction, waste disposal and general storage

Under regulation 25 of the <u>Aquaculture Regulations 2016</u>, aquaculture farming structures and general infrastructure are required to be maintained in such a condition that will prevent pollution, either at the construction or ongoing operations. At the decommissioning of a site, operators of marine leases are required to remove all structures and stock and rehabilitate the site to a condition to the satisfaction of the Minister.

Requirements for waste disposal and appropriate storage of chemicals, feed materials and general farm waste are legislated under the <u>Environment Protection Act 1993</u>, and associated EPPs. The EPA has also developed specific codes of practice for the <u>Oyster</u> and <u>Abalone</u> industry that highlight the environmental issues in relation to these industries and provide recommendations to assist farmers to meet their legislative requirements under the <u>Environment Protection Act 1993</u>.

Impacts on habitat and biodiversity:

Minimising the impacts to the seafloor from marine aquaculture activities is important for ecological sustainable development. To achieve this, aquaculture activities involving feed addition (e.g. tuna, finfish and subtidal abalone) are not to occur over sensitive habitats (e.g. seagrass or reef) unless appropriate mitigating strategies are in place to minimise risk and monitor the seafloor over time. In addition, regulation 25 of the *Aquaculture Regulations* 2016 requires that floating structures are kept at

least 3 metres (m) above the seafloor to prevent scouring, rubbing or shading of the seafloor unless the licence holder has authorisation to do otherwise (for example subtidal oyster structures).

There are multiple areas in South Australia where aquaculture is restricted and require appropriate approvals e.g. around parks declared under the <u>National Parks and Wildlife Act 1972</u>, historic shipwrecks declared under the <u>Historic Shipwrecks Act 1981</u>, and within some zones of marine parks (<u>Marine Parks Act 2007</u>) which further protect sensitive areas. PIRSA also apply an aquaculture exclusion buffer around Australian Sea Lion (ASL) breeding and haul-out areas.

To ensure that aquaculture activities have minimal impact on Threatened, Endangered and Protected Species (TEPS), PIRSA undertake an ESD risk assessment prior to the approval of an aquaculture licence that includes an investigation of the impacts to TEPS that may occur in the area. All aquaculture licence holders are also required to submit a strategy to the Minister on how they will minimise interactions with TEPS (under regulation 18 of the <u>Aquaculture Regulations 2016</u>). The strategy must be approved by the Minister and the licence holder is bound by law to comply with the strategy. If an interaction does occur, licence holders are required (under regulation 27 of the <u>Aquaculture Regulations 2016</u>) to report the incident as soon as they become aware of the interaction, and work with PIRSA and relevant agencies (e.g. the Department for Environment and Water - DEW) to resolve the incident, and where required, undertake a review of mitigation strategies.

Impacts on water resources:

Nutrients (including faeces and un-utilised feed) released from aquaculture activities can have significant adverse impacts on water quality and benthic environments. To address this, aquaculture zone policies limit the biomass (and by association the amount of feed that is used) that can be farmed in an area. To further understand the impact of aquaculture on water quality, a regional monitoring program was implemented for Lower Spencer Gulf in 2015, in which water quality is a major component (see Tuna and Finfish sections). For landbased operators, water usage may be legislated by DEW.

Requirements for water quality are legislated under the <u>Environment Protection Act 1993</u> and the <u>Environment Protection</u> (<u>Water Quality</u>) <u>Policy 2015</u> administered by the South Australian EPA. All aquaculture licensees must comply with EPA legislation and not cause environmental harm.

Species selection and escapes:

The escape of aquaculture stock can have serious implications for wild populations. Therefore, it is important to establish and maintain appropriate containment controls for stock to prevent an escape. There are however situations beyond the control of a licence holder where an escape can occur. To minimise the escape impact, PIRSA has multiple regulatory controls. The stock genetics are considered during the initial assessment of an application to farm and all licence holders must keep a stock register that outlines stock movements to and from the aquaculture site (regulation 15 of the <u>Aquaculture Regulations 2016</u>). In addition, all aquaculture licence holders are required to submit a strategy to the Minister on how they will minimise stock escapes, including infrastructure maintenance and staff training. The strategy must be approved by the Minister and the licence holder is bound by law to comply with the strategy. If an escape does occur, licence holders are required (under regulation 26 of the <u>Aquaculture Regulations 2016</u>) to report the incident within 24 hours and to rectify the cause of escape to prevent further escapes.

Compliance

Planning and compliance inspections are central to a well-established and contemporary industry. To ensure compliance with lease/licence conditions and relevant legislation, PIRSA authorised officers conduct routine field inspections and data audits for each aquaculture sector. Issues such as navigation, location of farming structures, species farmed, impacts to benthic habitats and discharge of water are among those variables that are investigated. Aquaculture site evaluations may also be conducted as part of the initial assessment of an application, in response to public concern, as an integral part of the risk assessment process for the licence application or as part of an audit program.

Aquatic animal health regulation

South Australia's freedom from many significant aquatic diseases provides competitive advantages in seafood production and market access. PIRSA maintains a dedicated aquatic animal health program, which aims to safeguard South Australia's fisheries and aquaculture resources from the impact of aquatic diseases. Aquatic Animal Health is regulated under the

<u>Aquaculture Act 2001</u>, the <u>Aquaculture Regulations 2016</u>, the <u>Fisheries Management Act 2007</u>, the <u>Livestock Act 1997</u> and Notices under the <u>Livestock Act 1997</u>.

Veterinary medicine use:

Veterinary medicines are important disease management tools. When used correctly, veterinary medicines play a valuable role in ensuring animal welfare and maximising the quality and yield of primary produce. Aquaculture farmers must endeavor to use veterinary medicines that are registered under the <u>Agricultural and Veterinary Chemicals Code Act 1994</u> (Agvet Code) through the Australian Pesticides and Veterinary Medicines Authority (APVMA). However, for veterinary medicines that are not permitted or registered with the APVMA, the South Australian <u>Aquaculture Regulations 2016</u> (regulation 10) provides a mechanism for off-label use (unregistered with the APVMA) under prescription from a registered veterinarian. Reasons for off-label use include new emergent diseases in aquaculture (a comparably young primary industry), emergencies and experimental treatments to facilitate data collection for APVMA minor use permits or registration.

For off-label veterinary medicine use under the <u>Aquaculture Regulations 2016</u>, PIRSA requires a veterinary prescription and information on the product, disease diagnosis, species to be treated, efficacy, host safety and environmental risk (including environmental toxicity). Risk assessment, calculation of environmental trigger values and predicted residue calculations are included in the assessment process agreed to by the EPA. The EPA is consulted with for applications that include discharge to the environment (e.g. sea-pontoon aquaculture). Requests for use of antibiotics are considered in line with the World Organisation for Animal Health (OIE) Aquatic Animal Health Code and in line with Australia's National Antimicrobial Resistance Strategy (AMR); that is, treatments for a diagnosed disease are considered (but not prophylactic treatment).

For further information, see <a href="https://www.pir.sa.gov.au/aquaculture/aquatic_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_medicine_use_in_animal_health/veterinary_

Livestock translocations:

Aquatic livestock translocations are regulated under both the <u>Aquaculture Regulations 2016</u> and the <u>Livestock Act 1997</u> primarily for the purpose of reducing the risk of disease introduction and spread. Legislative restrictions are in place to mitigate high risk movements of aquaculture livestock, including movements of livestock within South Australia, wild caught/collected stock brought onto a farm, and importing stock into South Australia. Currently, there are four Notices under the <u>Livestock Act 1997</u> that regulate high risk aquatic livestock movements. For further information on aquatic diseases see: www.pir.sa.gov.au/biosecurity/aquatics/aquatic_diseases and for moving or importing aquatic animals

Wild stock caught or collected for the purpose of aquaculture may require approval under both the <u>Fisheries Management Act 2007</u> (i.e. seedstock and broodstock), as well as Notices under the <u>Livestock Act 1997</u> (to bring stock onto the farm site). Assessment of livestock translocation requests may include requirements for veterinary stock inspection, batch testing to rule out notifiable and infectious disease, health certification and requirements for hatchery biosecurity in line with national guidelines: www.agriculture.gov.au/animal/aquatic/quidelines-and-resources.

Disease management and surveillance:

Disease management includes requirements to report disease (including notifiable diseases), report unusually high and unexplained mortality events, and requirements to maintain stock records (i.e. stock movement, mortality rate). These requirements are for aquaculture licence holders as prescribed under the <u>Aquaculture Regulations 2016</u>. In addition to batch testing for livestock translocations, these requirements provide for disease surveillance (passive), and early disease detection that can trigger investigations (e.g. aquaculture mortality or fish kill reports) to rule out disease (to support trade and market access, as well as provide for rapid disease response). Disease management also now includes zoning, for example mollusc Disease Management Areas based on FRDC 2018-090 project (Roberts et al 2020), which are now adopted in PIRSA's Emergency Response Plans. Emergency disease response protocols are in line with the OIE Aquatic Animal Health Code and Australia's Aquavetplan series of emergency disease response guidelines: www.agriculture.gov.au/animal/aquatic/aquavetplan

Active surveillance is also undertaken by PIRSA as required to confirm disease status or freedom from disease for the purpose of emergency response, to support policy (e.g. livestock translocation) or to support trade and market access requirements. Previous active surveillance in South Australia has occurred, including for Abalone Viral Ganglioneuritis (AVG), Withering Syndrome and *Perkinsus* (for Abalone), *Bonamia* (for Native Oysters), various notifiable prawn diseases and for Pacific Oyster Mortality Syndrome (POMS).

Disease management in aquaculture can also include farm biosecurity which may be a requirement for State livestock translocation approvals or a requirement of importing jurisdictions / countries. National guidelines now exist for aquaculture farm biosecurity including:

- Generic farm biosecurity guidelines (www.agriculture.gov.au/fisheries/aguaculture/farm-biosecurity-plan), or
- Sector specific farm biosecurity guidelines (<u>www.agriculture.gov.au/animal/aquatic/guidelin</u>es-and-resources).

PIRSA respond to wild fish kills and suspected disease in aquaculture to primarily rule out infectious and notifiable disease (PIRSA is the hazard leader for animal disease responses), and help where possible to determine the likely cause (e.g. human health risks, chemical spill, harmful algae bloom, notifiable disease) and provide response and mitigation options. If disease is detected, mitigation may include eradication, containment or control measures. If disease is ruled out and a chemical spill, oil spill or pollutant are determined to be a possible cause, then the appropriate government department are notified to investigate (e.g. the EPA or Department for Infrastructure and Transport (DIT)).

Fish kills are a global phenomenon and can be attributed to natural oceanographic cycles, disease outbreaks, harmful algal blooms (HABs), coastal pollution, marine heatwaves or climate change (Roberts et al 2019). In South Australia, many small scale fish kills investigated have been attributed to shallow, unprotected waters that are greatly influenced by extreme weather conditions including temperature (i.e. peak summer and peak winter), dodge or minimal tides, anoxia (low dissolved oxygen), HABs, 'blackwater' events in freshwater systems (flooding and associated anoxic water from high organic loads) and acid sulphate soil disturbance. Susceptible species are generally those in shallow water environments (including juveniles of economically important species), particularly benthic and intertidal species. Common species associated with natural fish kill events include Bony Bream, Carp, Mullet, Garfish, Crabs and various molluscs (including Abalone). Furthermore, causes of individual fish kill events can often remain unknown due mostly to the mortality not being observed and reported until fish wash ashore, which impedes appropriate sample collection and analyses. Investigations sometimes rely on anecdotal evidence and climatic weather observations as the basis for attributing "likely causes", with the situation closely monitored.

South Australian Shellfish Quality Assurance Program

The South Australia Shellfish Quality Assurance Program (SASQAP) is part of PIRSA's Biosecurity Division within the Food Safety Program. Biosecurity is the principal government agency charged with monitoring and maintaining shellfish food safety in South Australia (www.pir.sa.gov.au/biosecurity/food safety/shellfish sasqap).

SASQAP is a regulatory testing body that provides consumer protection and ensures development of domestic and international markets through the monitoring and testing of shellfish and water in shellfish growing areas in South Australia. Bivalve molluscs such as Oysters, Mussels, Cockles and Pipis are filter feeders that have the ability to concentrate bacteria, parasites, viruses, toxins and heavy metals.

If adverse conditions are likely to arise in a shellfish harvesting area, for example as a result of heavy rainfall events causing runoff from the land into the marine environment, SASQAP acts to close these areas as a precautionary measure to prevent contamination of the shellfish in the area. This serves to ensure only safe product reaches the market.

There are currently 24 classified shellfish harvesting areas in South Australia, the majority of which are located on the west coast of the Eyre Peninsula. There are also some other areas within Spencer Gulf, Gulf St Vincent and on the coast of Kangaroo Island.

National Aquaculture Strategy

In October 2017, the Federal Department of Agriculture and Water Resources (DAWR) released a National Aquaculture Strategy, which was developed with, and supported by state and territory jurisdictions and industry (www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/fisheries/aquaculture/national-aquaculture-strategy.pdf). The strategy is a national document designed to complement policy priorities and activities underway in jurisdictions aimed at supporting growth of the aquaculture industry. The strategy represents an important document that provides an Australia-wide approach and multiple actions to target significant growth within the industry; a doubling of the current value to \$2 B per year by 2027.

The strategy aims to streamline regulatory framework and enhance research, development and extension for aquaculture in Australia. Further, this strategy supports aquaculture by promoting opportunities for Aboriginal communities and integrated multi-trophic aquaculture (IMTA). South Australia has been meeting goals of the strategy by creating two new zones at Point Pearce that allow for aquaculture activity that is in the interest of the local Aboriginal community. This is a first for South Australia and provides opportunities for IMTA in the <u>Aquaculture (Zones-Eastern Spencer Gulf) Policy 2005</u>.

Seafood Growth Strategy for South Australia 2021-2031

In 2020, the state government established the Seafood Advisory Forum to bring together the different elements of the seafood industry: recreational fishers, commercial fishers, seafood processors, aquaculture, charter fishers, the restaurant sector and Aboriginal traditional fishers. The Forum has developed a 10-year strategic plan that aims to drive growth and opportunities for a sustainable, productive and profitable seafood sector in South Australia. The seafood growth strategy is underpinned by several key pillars that will support the State Government's Growth State plan, which aims to achieve a primary industries revenue of \$23B by 2030. More information on the Seafood Growth Strategy for South Australia can be found here: www.pir.sa.gov.au/__data/assets/pdf_file/0017/401480/seafood-growth-strategy-sa.pdf

Aquaculture activity in South Australia

Socio-economic data for 2020-21

Based on the most recent published BDO EconSearch report, the State's total value of seafood production (landed) in 2020-21 was \$400.6M, of which aquaculture contributed approximately half (\$200.1M) and wild-catch fisheries contributing the balance (\$200.5M) (Figure 1, BDO EconSearch 2022). The State's total aquaculture production in 2020-21 was 18,353 tonnes (t), up 5% compared to 2019-20 (17,472 t). For comparison, the State's total wild-catch fisheries production (t) in 2020-21 was 46 215 t, down 5% compared to 2019-20 (48 448 t, Figure 1). The contribution of each sector to the total production and value of aquaculture in South Australia during 2020-21 is shown in Figure 2.

The aquaculture industry in South Australia has developed significantly since the Oyster sector first began commercial production in the 1980s. South Australia is now home to the most diverse range of aquaculture sectors in Australia. The largest single sector in the state's aquaculture industry is Tuna (Figure 2), which accounted for approximately 46% or \$91M of South Australia's gross value of aquaculture production in 2020-21 (Table 1, BDO EconSearch 2022). The other three main sectors are Oysters (22% or \$43.75M - highest value on record), Marine Finfish (17% or \$33.56M), and Abalone (9% or \$18.47M). (Figure 2, Table 1).

While there was an increase (5%) in the State's total aquaculture production (t) in 2020-21, there was a decrease (13%) in the total value of aquaculture production compared to 2019-20 (\$228.98M, Table 1). This was driven by a 34% decrease in Tuna farm output as a result of a 9% decline in volume of farmed Tuna and a 27% fall in price. Decline in production was due to smaller fish being caught for on-growing from the Australian wild catch Southern Bluefin Tuna Fishery. The significant decline in price was due to smaller fish not receiving a premium price and an appreciation of the Australian Dollar against the Yen (BDO EconSearch 2022).

In addition, the value of Finfish production decreased as a result of an 8% decline in production and an 8% decline in price (Table 1). This was a result of the COVID-19 pandemic triggering restaurant closures and an oversupply of fish, and the suspension of international flights leading to an inability to supply fresh fish into overseas markets. The value of Marron/Yabbie

sector production also decreased by \$0.05M or 38% as a result of a 49% fall in the volume of Marron/Yabbie production due to the COVID-19 pandemic and despite a 20% increase per unit price of Marron/Yabbies. For the Other sector, microalgae production decreased significantly compared to 2019-20 levels due to issues in the supply chain because of the COVID-19 pandemic (Table 1, BDO EconSearch 2022).

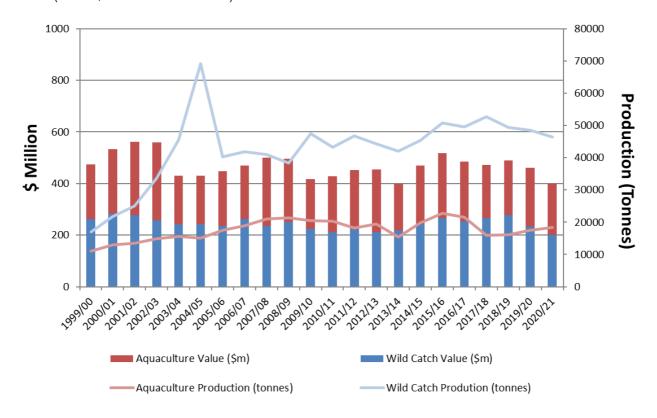


Figure 1. SA fisheries and aquaculture production (t) and value (\$M) in 2020-21.

While there was an overall decrease in value of production in 2020-21, some individual aquaculture sectors value increased substantially despite the COVID-19 pandemic, including the Oyster (75% or \$18.8M), Abalone (54% or \$6.5M), Mussel (6% or \$0.22M) and Freshwater Finfish (30% or \$1.09M) aquaculture sectors (Table 1, BDO EconSearch 2022). The value increased in each of these aquaculture sectors as a result of the following:

- Oyster 76% rise in volume and average price per dozen remaining at relatively high historical levels. The increase
 in volume is due to spat supply levels returning to normal, following a spat shortage caused by the 2016-17
 Tasmanian POMS outbreak. Note that while the 2020-21 Oyster sector value was the highest on record (\$43.75M vs
 previous record of \$40M in 2016-17), there is potential for further growth as volume is still below historical level.
- Abalone 54% rise in volume due to nutritional and husbandry improvements.
- Freshwater Finfish 12% increase in the volume of Freshwater Finfish production and a 16% rise in the per unit price. Note these figures should be treated with caution as they are most likely due to an error in reporting for this sector in 2019-20.
- Mussel 6% rise in the volume of Mussel production as demand returned to pre-COVID-19 pandemic levels.

There were no visitors to aquaculture tourism ventures (i.e. Oceanic Victor Pty Ltd located at Encounter Bay, Victor Harbor) in South Australia in 2020-21, a fall from an estimated 2,500 visitors in 2019-20 with a value of \$0.41M. This was a result of the global COVID-19 pandemic and resulting lockdowns and travel restrictions, as well as upgrades to the Granite Island causeway which restricted access (BDO EconSearch 2022).

In 2020-21, aquaculture's total contribution to gross state product (GSP) of \$309.1M represented 0.26% of the total GSP for South Australia (\$117.7B). Around 69 per cent of the contribution to GSP was generated in regional South Australia. Direct employment was estimated to be 1,224 Full Time Equivalent (FTE) jobs (784 on-farm and 440 in downstream activities) through

direct employment and 1,538 flow-on jobs, giving total employment of 2,762 FTE (BDO EconSearch, 2022). Approximately 70% of these jobs were generated in regional South Australia, particularly the Eyre Peninsula region, reflecting the dominance of Tuna and also the majority of production of Oysters, Finfish and Mussel farming.

In addition to <u>The Economic Contribution of Aquaculture in the South Australian State and Regional Economies 2020-21</u> report, BDO EconSearch have developed South Australia Aquaculture Economic Indicators Dashboards for 2020-21, which summarise the key economic indicators (production, value, household income, employment, contribution to Gross State Product) and associated trends for each aquaculture sector; see <u>Tuna</u>, <u>Marine Finfish</u>, <u>Mussels</u>, <u>Oysters</u>, <u>Abalone</u>, <u>Freshwater Finfish</u>, <u>Marron and Yabbies</u>, and <u>Other</u>.

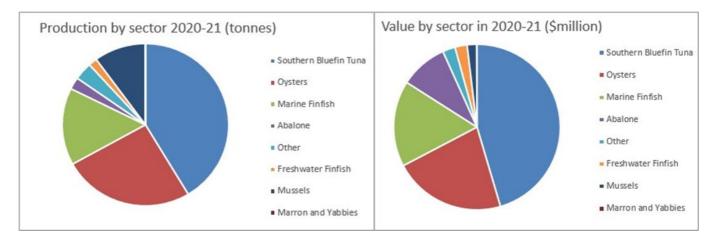


Figure 2. Contribution of each sector to the total production (t) and value (\$M) of aquaculture in South Australia during 2020-21.

	Weight ('000kg)		Value (\$m)			
	2019/20	2020/21	Change	2019/20	2020/21	Change
Southern Bluefin Tuna	8,345	7,600	-9%	137.00	91.00	-34%
Marine Finfish	3,068	2,825	-8%	39.61	33.56	-15%
Oysters						
adult ^a	2,659	4,687	76%	24.95	43.75	75%
on-grown b	423	691	64%	1.37	2.42	77%
spat c	-	1 -	-	6.35	6.41	1%
Mussels	1,737	1,845	6%	3.47	3.69	6%
Abalone ^d	285	440	54%	11.97	18.47	54%
Freshwater Finfish	274	307	12%	3.60	4.69	30%
Marron and Yabbies	3	2	-49%	0.13	0.08	-38%
Other e	1,101	647	-41%	8.26	4.85	-41%
Total f	17,472	18,353	5%	228.98	200.09	-13%
Tourism (visitors)	2,500	0	-100%	0.41	0.00	-100%

a The weight for adult Oysters is an approximation on the basis that a dozen Oysters weighs one kilogram.

Table 1: South Australia aquaculture production and value for the years 2019-20 and 2020-21.

b The volume and value of juvenile Oysters sold for on-growing are excluded from the total volume and value of aquaculture as it is considered an input to production for the final sales of adult Oysters.

^c The value of spat is also excluded from the total. All spat grown in SA is now sold in SA (i.e. no spat grown in SA is exported to other states) and is considered an input to production for the final sales of adult Oysters.

d Abalone produced from marine and land-based aquaculture sites, i.e. the data represent species not class of licence.

[°] Other aquaculture production in 2020/21 and 2020/21 was mostly comprised of land-based Algae production.

f Totals may contain rounding errors.

South Australia Aquaculture production and value of production between 1999-2000 and 2020-2021 is shown in Figure 3. Factors that have historically influenced aquaculture production and value in South Australia include:

- Fluctuating dollar against the Japanese yen which impacts on the price received for Tuna when exported to Japan. The impact of the falling yen is demonstrated in the decrease in aquaculture value of production in 2013-14.
- Increased Southern Bluefin Tuna quota allocation.
- Reduction in Oyster spat availability due to the occurrence of POMS in Tasmania which is demonstrated in the
 decrease in aquaculture value of production in 2016-17 and 2017-18. To assist with the recovery of the Oyster sector,
 fees were waivered for the period 1 January 2018 to 30 June 2020.
- Innovation and expansion of other aquaculture sectors such as the fluctuating production of Microalgae in recent vears.
- Significant bushfires from November 2019 to January 2020 in four regions of South Australia, including the Southeast, Yorke Peninsula, Kangaroo Island (KI) and the Adelaide Hills. A large proportion (70%) of the bushfire damage (300,000 hectares) occurred on KI, resulting in 60% of the total primary production area being damaged (187,000 hectares). A total of 19 properties licensed to conduct aquaculture on KI were affected by the bushfires. This was either through loss of stock, damage to aquaculture infrastructure (e.g. netting, fences), or access to processing facilities/local purchasers. Fires within the other regions of the State did not come in contact with registered aquaculture licences.
- Coronavirus (COVID-19) was declared a global pandemic in March 2020 which resulted in the closure of restaurants and food outlets, and a reduction or loss in access to domestic and export markets for South Australian seafood industries. Despite this, the value of production in the aquaculture industry increased by 8% in 2019-20 from the previous year. The majority of aquaculture sectors however reported negative impacts to their businesses from the pandemic, in particular the mussel industry which reported significant impacts to the value of their production as a result of COVID-19 restrictions decreasing access to export markets and dampening of domestic food service consumption. To assist the recovery of the South Australia aquaculture industry from the impacts of COVID-19, the collection of 2020-21 aquaculture sector fees were deferred for six months and any outstanding 2019-20 fees were also deferred. The next round of fees were not collected until January 2021.

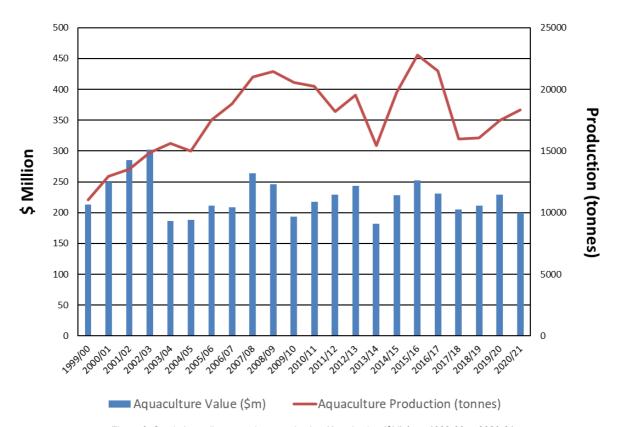


Figure 3. South Australia aquaculture production (t) and value (\$M) from 1999-00 to 2020-21

Industry licence holders

The total number of active aquaculture licences in South Australia during 2020-21 was 483 (correct as of 30 June 2021), comprising 422 marine sites and 61 landbased sites (Figure 4). Included in these numbers are 6 marine maintenance sites licensed by the Tuna sector to hold and maintain sea-pontoons and one marine site licensed for tourism activities (not operating in 2020-21). A full list of the aquaculture licences for which this report relates is provided in Appendix 1.

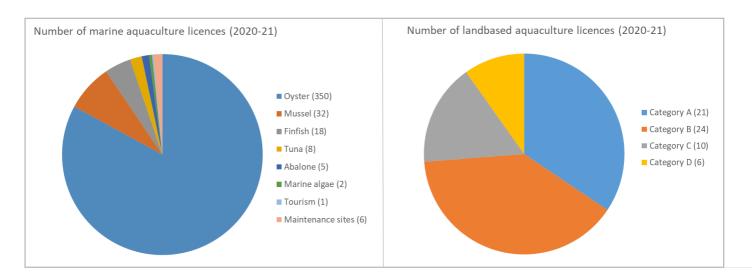


Figure 4. A summary of South Australian marine and landbased aquaculture licences 2020-21

Aquaculture applications processed by PIRSA

PIRSA processes a range of applications each year, which are requested from the aquaculture industry to improve/change the activities of their business. Lease and licence changes managed by PIRSA can include, for example, assessments for new licences, movements of leases, variations of leases/licences (e.g. species additions, divisions and amalgamations, infrastructure changes), transfers, renewals and surrenders. Table 2 represents the number (total 159) and type of application completed by PIRSA in 2020-21.

Table 2: A summary of aquaculture applications completed				
Application type	2020-21			
New lease and licence Lease and licence movement Licence variation Lease and/or licence division Lease and/or licence amalgamation Lease and/or licence transfer Lease renewal Lease/ licence surrender Change of specified person/s	3 21 12 3 8 27 74 4			

Aquaculture policy

Summary of aquaculture zone policies in South Australia

Aquaculture zone policies set out considerations for aquaculture that are specific to the environmental, sociological or geographical characteristics of the zone area. Aquaculture zones prescribe the maximum hectares (ha) that can be developed

and the class of species permitted for the purposes of aquaculture. Dependent on the species considered, a maximum biomass (tonnage) can also be prescribed. The prescribed criteria are determined by the physical and biological characteristics of the zone and the biological requirements and typical farming infrastructure of the species being considered for the zone. An aquaculture zone identifies a general area in which aquaculture has been deemed suitable, noting that any specific application to undertake aquaculture within a zone is still assessed on its merits and for the specific location.

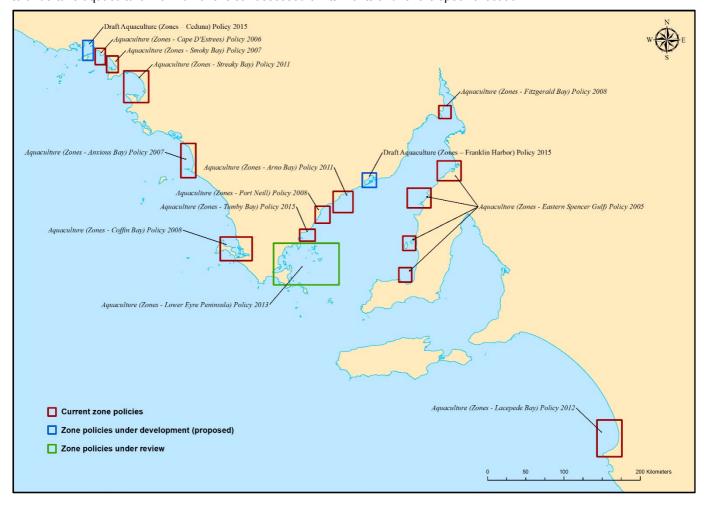


Figure 5. Aquaculture zone policies in SA (current and proposed)

There are twelve aquaculture zone policies prescribed in South Australia A (Figure 4), which represent management areas where aquaculture is either excluded or permitted. These zone policies occupy approximately 425 024 ha or 7% of our State waters (Appendix 2). Ten of the zone policies are located off the coast of the Eyre Peninsula, one off the western side of the Yorke Peninsula and one in the State's southeast. More than half (52%) of the area allocated to aquaculture zone policies in South Australia is comprised of aquaculture exclusion zones where no aquaculture activity is permitted. Exclusion zones generally include sensitive habitats or areas that have been identified as important for other users of the marine environment (e.g. commercial and recreational fishers). The remaining 48% is set aside to allow aquaculture production to occur and are known as aquaculture zones. In general, between 5-10% of the area within an aquaculture zone is allocated for aquaculture at any one time. This equates to approximately 0.2% of State waters currently available for aquaculture, of which 0.06% was held as aquaculture leases in 2020-21.

The Eyre Peninsula aquaculture zone is the largest in terms of total area within the State and has the most diverse range of species produced. The most recent zone policy is located off the coast of Tumby Bay on the Eyre Peninsula. Details on each policy are provided in Appendix 2 or at www.pir.sa.gov.au/aquaculture/policy_and_legislation_for_aquaculture/zone_policies.

The prescribed classes of aquaculture considered for an aquaculture zone can include:

- the farming of aquatic animals (other than specified animals) in a manner that involves regular feeding (i.e. prescribed wild-caught tuna, finfish, abalone or any other species requiring supplementary feed);
- the farming of molluscs (i.e. abalone and filter feeding organisms such as oysters, mussels, scallops);

- the farming of bivalve/filter feeding molluscs (i.e. filter feeding organisms such as oysters, mussels, scallops); and
- the farming of algae.

Aquaculture zone policy development and review 2020-21

2020-21 Aquaculture zone policy ~ Development

There were no new zone policies finalised in 2020-21, however, two new zone policies continue to be developed within the Franklin Harbor and Ceduna growing regions to consolidate existing aquaculture activity occurring within these two regions.

2020-21 Aquaculture zone policy ~ Review

In 2020, a targeted review commenced for the *Aquaculture (Zones – Eastern Spencer Gulf) Policy 2005*, to permit the farming of algae in the three Hardwicke Bay aquaculture zones following an expression of interest by the Narungga Nation Aboriginal Corporation. No further amendments were proposed to existing aquaculture zone boundaries or prescribed criteria of any other aquaculture zone prescribed within the Zone Policy. Public consultation for the proposed amendments contained within the *draft Aquaculture (Zones – Eastern Spencer Gulf) Amendment Policy 2020* and supporting Report commenced on 20 August 2020 and ended on 23 October 2020. No further amendments were made to the Draft Policy and the Policy was approved on 11 May 2021 by the former Minister for Primary Industries and Regional Development. In addition, the Policy was amended via a notice in the Government Gazette to revoke the designation of the Point Peace (east) and Point Pearce (west) intertidal aquaculture zones as a public call area. This amendment was made to stimulate aquaculture development to support the local Aboriginal community, consistent with the prescribed criteria of these aquaculture zones.

Further, in 2020 a review commenced for the *Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013* following requests from the aquaculture industry. The review will ensure the Zone Policy continues to maximise the use of marine resources for the purposes of aquaculture and provide sustainable industry growth. A Ministerial Advisory Committee was established, including members from the tuna, finfish and mussel aquaculture sectors, EPA, DIT and PIRSA (including the South Australian Research and Development Institute (SARDI)) to inform the review. A Draft Policy and supporting Report is expected to be developed for public consultation in 2022, with finalisation to occur thereafter as per the requirements of the *Aquaculture Act 2001*.

Public call for aquaculture zone policy tenure 2020-21

Once an aquaculture zone policy is legislated after the aquaculture zoning process, an aquaculture lease and licence are required to undertake farming activities within the zone. It is important to distinguish between aquaculture zoning and individual site allocation and management. Aquaculture zone policies provide a broad overview of the ecological environment and establish areas in which aquaculture is deemed appropriate to occur, while controls relating to the performance of farm operations are applied through marine aquaculture leases, licences and the *Aquaculture Regulations* 2016.

Applications for lease tenure within an aquaculture zone are referred to the Aquaculture Tenure Allocation Board (ATAB). If a zone is prescribed as a public call area within an aquaculture zone policy, a public call is made inviting applicants to submit their proposal on the required application form. There are three aquaculture zones which do not require a public call to be made: Lincoln (inner) sector of the Lincoln aquaculture zone (as this zone is specifically for tuna farming and holders of commonwealth tuna quota); Point Pearce (east) intertidal aquaculture zone; and Point Pearce (west) intertidal aquaculture zone. Table 3 outlines lease tenure allocation for public and non-public call areas between 2018 and 2020. There was no public call in 2020-21, however, PIRSA continued with the assessment of licence applications received from a large public call and non-public call (10 aquaculture zones) in 2019-20.

Lease applications are assessed by the ATAB who then makes a recommendation to the Minister responsible for the administration of the <u>Aquaculture Act 2001</u> on which applications should proceed. The successful applicant will be invited to submit an aquaculture licence application, which will be subject to a comprehensive ESD risk assessment conducted by PIRSA

and provision to mandatory referral agencies for comment. Applications for pilot leases outside an aquaculture zone are not subject to a competitive allocation process. The competitive allocation process ensures a fair and efficient means of allocating the State's marine aquaculture resources. The allocation process is used to determine which applicant will use the public resource at an optimum level in terms of the quality and quantity of output relative to the capacity of the environment.

Table 3: Lease tenure allocation for public and non-public calls within aquaculture zones between 2018 and 2020

Year	Zone Policy	Zone	Hectares released	Hectares allocated
2018	Aquaculture (Zones – Fitzgerald Bay) Policy 2008	Fitzgerald Bay aquaculture zone	123	123
2018	Aquaculture (Zones – Streaky Bay) Policy 2011	Haslam (north bank) aquaculture zone	8.481	6
2018	Aquaculture (Zones – Streaky Bay) Policy 2011	Point Gibson aquaculture zone	10	10
2018	Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013	Lincoln inner sector of the Lincoln aquaculture zone	NA*	125
2020	Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013	Louth Bay aquaculture zone	51	31 pending
2020	Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013	Boston Bay and Boston Island (east) sectors of the Boston Bay aquaculture zone	19	0
2020	Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013	Lincoln outer sector of the Lincoln aquaculture zone	5000	0
2020	Aquaculture (Zones - Anxious Bay) Policy 2007	Anxious Bay aquaculture zone	120	120
2020	Aquaculture (Zones – Tumby Bay) Policy 2015	Tumby Bay aquaculture zone	1295	800 pending
2020	Aquaculture (Zones – Coffin Bay) Policy 2008	Kellidie Bay aquaculture zone	3	3
2020	Aquaculture (Zones – Streaky Bay) Policy 2011	Streaky Bay aquaculture zone	40	0
2020	Aquaculture (Zones – Streaky Bay) Policy 2011	Blanche Port aquaculture zone	37.5	0
2020	Aquaculture (Zones – Eastern Spencer Gulf) Policy 2005	Point Peace (east) intertidal aquaculture zone	NA*	20
2020	Aquaculture (Zones – Eastern Spencer Gulf) Policy 2005	Point Pearce (west) intertidal aquaculture zone	NA*	30, 10 pending

^{*} Hectares released not applicable as aquaculture zone not designated as a public call area. Pending – pending outcome of applications in progress

Aquaculture zone policy tenure allocation overview

PIRSA monitors the tenure (leasable ha) and biomass limits prescribed within each zone policy to ensure that tenure allocated is within the defined limits. The following figures (6-14) provide an indication of the tenure that is available within each of the zone policies listed in Appendix 2.

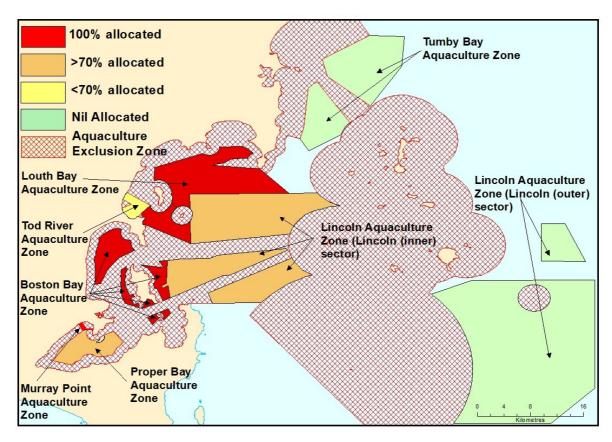


Figure 6. Tenure indication within the Aquaculture (Zones – Lower Eyre Peninsula) Policy 2013 and Aquaculture (Zones – Tumby Bay) Policy 2015 (pending application assessment process).

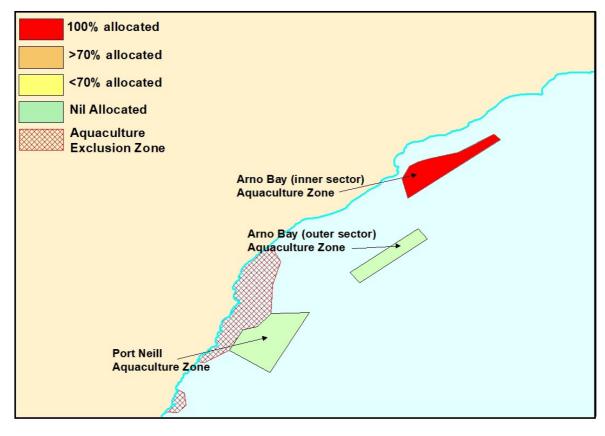


Figure 7. Tenure indication within the Aquaculture (Zones - Port Neill) Policy 2008 and Aquaculture (Zones - Arno Bay) Policy 2011

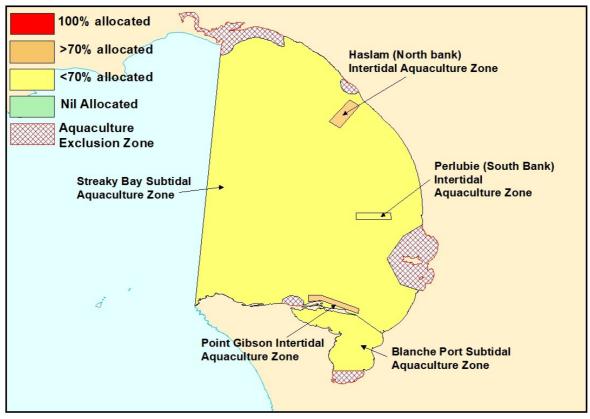


Figure 8. Tenure indication within the Aquaculture (Zones – Streaky Bay) Policy 2011 (pending application assessment process).

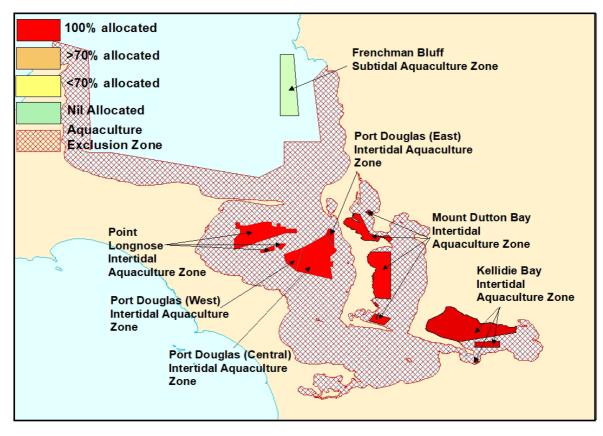


Figure 9. Tenure indication within the Aquaculture (Zones – Coffin Bay) Policy 2008.

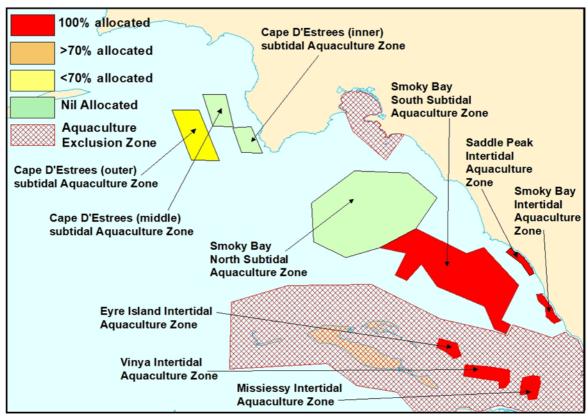


Figure 10. Tenure indication within the Aquaculture (Zones - Cape D'Estrees) Policy 2006 and Aquaculture (Zones - Smoky Bay) Policy 2007.

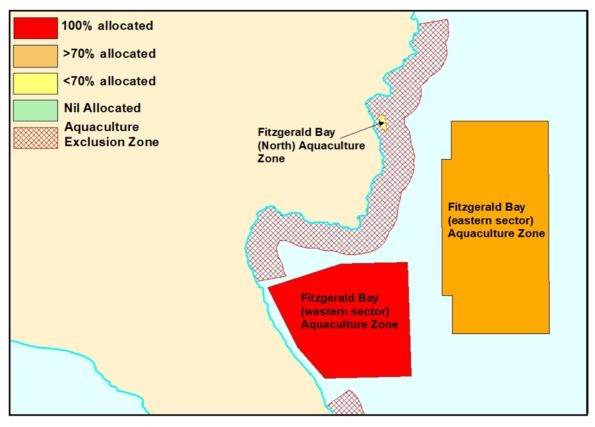


Figure 11. Tenure indication within the Aquaculture (zones – Fitzgerald Bay) Policy 2008.

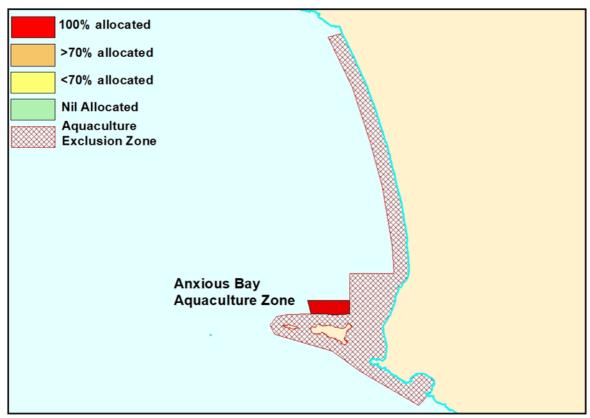


Figure 12. Tenure indication within the Aquaculture (Zones – Anxious Bay) Policy 2007.

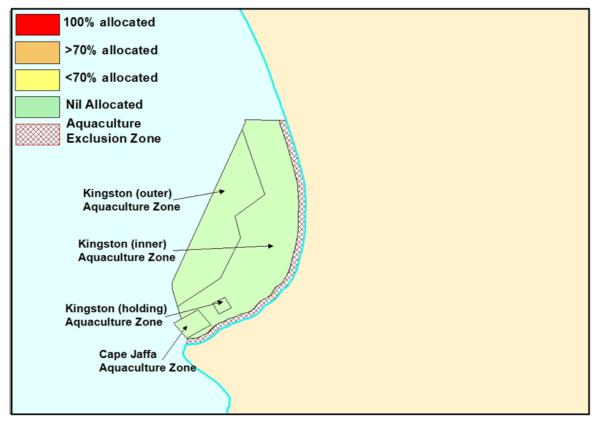


Figure 13. Tenure indication within the Aquaculture (Zones – Lacepede Bay) Policy 2012.

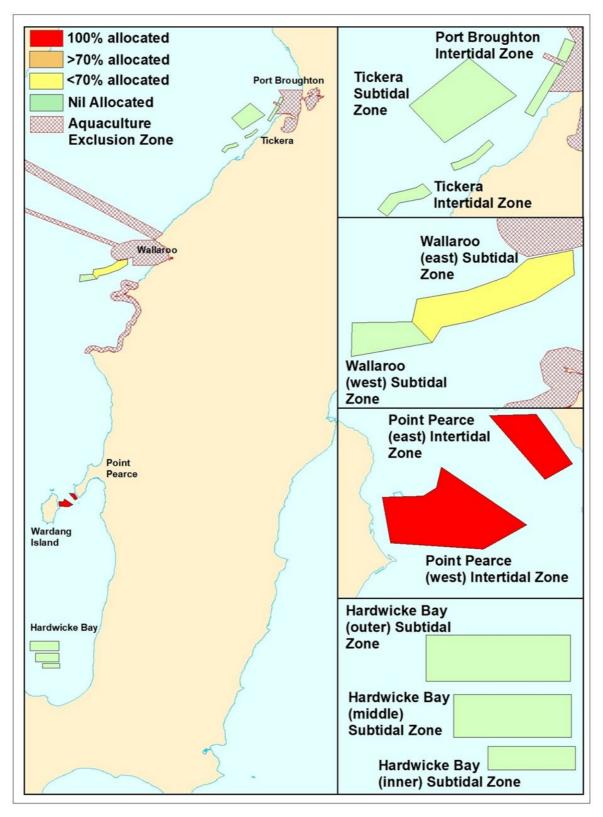


Figure 14. Tenure indication within the Aquaculture (Zones – Eastern Spencer Gulf) Policy 2005 (pending application assessment process).

Aquaculture outside zone policies in South Australia

Aquaculture can take place inside or outside designated aquaculture zones. The advantage of applying for aquaculture activities within an aquaculture zone is the prior regulatory and assessment processes that are maintained by the relevant policy. Specifically, a number of legislated referrals to other agencies, and technical investigations to provide environmental information are conducted when a zone is being developed and are therefore not required to be duplicated for applications

inside a zone. However, it is recognised that the location of aquaculture zones may not suit some aquaculture activities and in South Australia, aquaculture activities also occur outside existing aquaculture zone policy areas in waters off Kangaroo Island, Yorke Peninsula, Victor Harbor, Ceduna and Cowell.

Aquaculture (Standard Lease and Licence Conditions) Policy 2022

On 16 February 2022, the <u>Aquaculture (Standard Lease and Licence Conditions) Policy 2022</u> (the Policy) was approved, and came into operation on 18 August 2022. The Policy standardises aquaculture lease and licence conditions which will encourage aquaculture development and improve investor confidence by simplifying the regulatory environment, including reducing 'redtape', for aquaculture operators. Conditions contained within the Policy constitute conditions of an aquaculture lease and licence and, are to be read as forming part of a lease and licence holder's obligations. Individual lease and licence certificates containing conditions still remain, however the Policy replaces the majority of these conditions, irrespective of when a lease/licence was issued. The Policy provides flexibility to allow certain conditions within the Policy to be overridden by specific conditions on an individual aquaculture lease and licence certificate where appropriate.

As of 18 August 2022, aquaculture lease and licence holders need to abide by conditions contained within the Policy and also individual lease and licence certificates. In 2022/23, all aquaculture lease and licence certificates will be reissued to reflect standardised conditions within the Policy, with only conditions specific to the activity being undertaken on a lease or licence remaining. Most conditions contained within the Policy are existing conditions of aquaculture leases and licences with their intent maintained, so impacts to aquaculture obligations are minimal. Further information regarding the Policy, including the development and implementation process, and copies of supporting documentation (i.e. the supporting report and document responding to submissions received on the Policy) can be found on the PIRSA Fisheries and Aquaculture website.

Changes to the **Aquaculture Act 2001**

In 2018, the State Government made an election commitment to explore options to develop and increase investment in the State's aquaculture industry. To meet this commitment, in 2019 PIRSA made amendments to the <u>Aquaculture Act 2001</u> to increase the maximum term that may be given to an aquaculture production lease from 20 years to 30 years, and to enhance notification to registered third party interests on leases prior to a lease being cancelled. To provide existing aquaculture production lease holders an earlier opportunity to achieve longer lease terms, rather than wait until their next renewal date, amendments were also made to permit them to apply to the Minister for a one-off extension of their lease term up to 30 years. Application forms and further information surrounding the one-off extension opportunity were made available on the <u>PIRSA</u> website. These changes will increase certainty for financiers and may increase the access of capital to aquaculture operations. It will also provide the aquaculture industry with more certainty and security in their rights moving forward.

During 2021, PIRSA led the development of the Aquaculture (Tourism Development) Amendment Bill 2021 to amend the Aquaculture Act 2001 and its passage through the Parliament of South Australia. In December 2021, the Parliament of South Australia passed the Bill, and thereafter the Aquaculture (Tourism Development) Amendment Act 2021 received Royal assent from the Governor. The amendments, yet to come into effect, will streamline the assessment and approval process for proponents of marine-based tourism developments located within aquaculture zones, which complement, promote, or be of benefit to aquaculture undertaken within respective aquaculture zones. Once in effect, stakeholders will no longer be required to separately seek development consent and an authority to use the seabed from multiple government authorities under other legislation but can come directly to PIRSA to assess and approve their proposals under the Aquaculture Act 2001. The provisions of the Aquaculture (Tourism Development) Amendment Act 2021 are proposed to come into effect by proclamation during the 2023/24 financial year following PIRSA undertaking a review of the Aquaculture Regulations 2016, as well as other administrative processes, to support the implementation of the amendments and ensure the assessment of aquaculture tourism development activities can be undertaken consistent with the objects of the Aquaculture Act 2001.

Tuna

Overview of the industry

The Tuna aquaculture sector is well established, with significant growth in production since its initiation in the 1990s. The species targeted by this sector is the Southern Bluefin Tuna (SBT) (*Thunnus maccoyii*).

SBT farming (or ranching) represents a high performing sector of the South Australian aquaculture industry. In 2020-21, there were 12 Tuna farms licensed by PIRSA which occupied 1 836 ha of water. The majority of these (11) were located east of Boston Island, near Port Lincoln. The remaining site was located in Arno Bay which was used to hold broodstock. Individual Tuna aquaculture licences are listed in Appendix 1.

The industry is based on the wild capture of juvenile SBT between December and March each season. The amount of Tuna caught restricted by an annual quota determined by the international management body, the Commission for the Conservation of Southern Bluefin Tuna (CCSBT). Over 85% of Australia's SBT quota is used for farming in South Australia. The global and Australian quota has continued to increase from 2012 when the CCSBT adopted a Harvest Strategy that uses a scientific model to determine what is a sustainable global catch and each individual country has a quota that is a proportion of that global total. Since 2012, Australia's quota has increased gradually from 4 015 t in 2011 to 6 238 t per annum for 2021-2023. The quota for 2024-2026 will be set in October 2022. Note that 95% of the Australian SBT quota is automatically allocated by legislation to the commercial sector and 5% for catch by the charter/recreational sector.

Juvenile SBT are moved from their natural wild migratory path through the Great Australian Bight into off-shore sea-pontoons (40-45 m diameter) located near Port Lincoln, where they are on-grown to a larger market size and condition. SBT are held in sea-pontoons for a grow-out period of approximately 6 months during which time they can double their whole weight. During grow-out tuna are typically fed their natural diet which is wild caught fresh sardines. Sardines in SA are sustainably caught under strict catch quota limits, which are set annually/biannually by a scientific assessment of the sardine population. In 2018, the South Australian Sardine Fishery (SASF) was certified by the Marine Stewardship Council (MSC). The SASF received the highest ever score for a first time certified fishery in the world, from over 400 fisheries certified worldwide by the MSC. For a summary of production and value, and other key economic indicators and trends for the Tuna aquaculture sector, see Tuna farming Economic Indicators Dashboard 2020-21.

Farmed Tuna are South Australia's largest aquaculture export. Historically, exports have almost totally gone to Japan, however, in recent years exports to Korea and China have grown to be almost 10% of total harvest in some years. In addition, the Australian domestic market has grown quickly, including development of new value-added products.

The environmental impact of sea cage aquaculture has been well described and can include impacts associated with dissolved nutrients from fish metabolism, and solid waste from faeces and un-utilised feed (note: feed wastage is avoided as it is economically unviable). For Tuna, these are predominantly dispersed in the water column (~85%), with the remainder deposited on the underlying seafloor (Fernandes *et al.* 2007a and 2007b, Tanner and Volkman 2009). Recently, PIRSA approved the farming of seaweed (as biofouling) on a Tuna aquaculture licence which may assist with nutrient offsets for the industry.

To ensure the impacts are minimal and managed to an acceptable level, a carrying capacity model developed by SARDI is used to set precautionary biomass limits for both individual sites and across the entire Tuna farming zone. Zone policies are developed to protect the environment from significant ecological impacts that the Tuna sector may have within their growing regions, and to ensure husbandry standards are enforced. The environmental monitoring program (EMP) process provides ongoing environmental monitoring information required to identify and control the occurrence of any impacts the Tuna sector may present on both an individual site level and a whole of sector level. In addition, it is a legislative requirement for licence holders to fallow or move sea-pontoons each year to provide the seafloor time to recover. This is in addition to the tuna farming cycle that allows the seafloor 6 months to fallow between the end of harvest (July/August) and restocking from January the following year.

The wider ecological benefit of tuna farming is that in the wild the SBT age-groups captured for farming have a high annual natural mortality of 20-30% from predators and periods of starvation. They are also believed to have a relatively poor feed conversion ratio (FCR) in the wild because of the high energy used in escaping predators and in annual migrations from the Indian Ocean to the Great Australian Bight. In contrast, in farms the natural mortality is less than 1% in the grow-out period and much more of the energy from feed goes into growth rather than escaping predators and migration. In addition, tuna farming maximises the seasonal grow-out (summer) and the quality (fat) content in autumn/winter before harvest.

Environment

Regional environmental monitoring program (AEMP)

In 2015, a new regional aquaculture environmental monitoring program (AEMP) was developed for the Finfish and Tuna aquaculture sectors in lower Eyre Peninsula. The program was designed over a four year cycle with a review in the fourth year to inform the design of the next four-year cycle. The program was designed to describe the overall health of the region with respect to cumulative aquaculture impacts rather than monitoring at the site or lease scale, in response to recognition that the majority of nutrient waste from Finfish and Tuna licensed sites is dissolved in the water column and is likely carried offsite. The monitoring program was developed in consultation with the Tuna and Finfish aquaculture industries, PIRSA (including SARDI) and the EPA.

The program was divided into a pelagic/oceanographic component and a benthic/seafloor component. Information collected and analysed for the first four-year regional program (2015-2019) included water quality, oceanography, nutrients, bacteria and benthic infauna assemblages, all of which contribute to understanding impacts of aquaculture at a regional and zone scale and to help validate the existing hydrodynamic and biogeochemical model for Lower Spencer Gulf.

The objectives of the pelagic and oceanographic component were to:

- determine baseline values and the extent of environmental, chemical and biological variability in relation to water
 quality and planktonic ecosystem composition to assess past (if available) and future changes in the trophic state of
 the Boston Bay and the Lincoln (inner sector) aquaculture zones and connected coastal systems, and
- use the collected data and aquaculture feed inputs to update and validate the oceanographic model for Spencer Gulf to assist in regional aquaculture planning and management.

The objectives of the benthic component were to:

- determine if there is any regional scale effect of Tuna and Finfish aquaculture on infauna (animals living under the seafloor) in and around the Boston Bay and the Lincoln (inner sector) aquaculture zones,
- determine if the infauna assemblages show any change between 2016 and 2018, the two years in which sampling was undertaken, and
- analyse the time series of infauna data sampled for the Tuna and Finfish sectors between 2005 and 2014 to determine
 any temporal and spatial patterns in the data.

Results from the 2015-2019 regional AEMP found:

- significant spatial and temporal variations in the physical environment, circulation, water quality and planktonic ecosystem composition, including
 - o nutrients, chlorophyll a, phytoplankton abundance, and community composition, harmful algal bloom (HAB) species and frequency, and planktonic community size structure and composition, showed inshore sites within Boston and Louth Bay's differ significantly from offshore sites. Collectively, these trends are consistent with impacts expected from anthropogenic nutrient enrichment, of which there are a number of sources in the area including aquaculture. The results are supported by oceanographic modelling, which provides a greater understanding of natural and anthropogenic nutrient supply, connectivity, and dispersal in the region and at the scale of Spencer Gulf.
 - while nutrient and chlorophyll a concentrations at the regional scale were elevated above background levels, they were generally low and below the Australian and New Zealand Environment and Conservation Council (ANZECC) water quality guidelines 2000.
 - the planktonic assemblage and water quality results provide enough sensitivity to indicate that aquaculture is having a detectable impact on water quality and trophic state at the inshore sites within Boston and Louth Bay's. The results also provide a baseline and a set of multiple, complementary indicators for explaining future changes, natural or anthropogenic.
- both spatial and temporal variation were detected in the infaunal assemblages in the Boston Bay and Lincoln (inner) aquaculture zones, but there was no indication that aquaculture has a significant impact on infauna. Instead, there were differences between control groups in both zones, consistent with a naturally occurring north-south gradient in infaunal assemblages. A similar result was found for time series analysis undertaken on samples collected between 2005 and 2014.

Given the pelagic and oceanographic results from the 2015-2019 AEMP indicated that aquaculture may be having an impact on the pelagic component of the ecosystem in the physically connected inshore regions of Boston and Louth Bay, the 2019–2023 AEMP is undertaking more detailed investigations into the fate and consequences of the nutrients being added to the system. In particular, how these nutrients might be affecting seagrass in the region. The benthic component of previous monitoring programs focused on infauna as an indication of ecosystem functioning and did not demonstrate an impact at compliance sites outside of lease boundaries, or on a regional scale and hence this component of the AEMP has been scaled back to approximately every five years. The 2019-2023 AEMP instead focuses on seagrass communities located within the bays near Port Lincoln and Louth Bay. Combined with pelagic (lower trophic) ecosystem, water quality, and oceanographic monitoring, and hydrodynamic and biogeochemical modelling, this next monitoring program (first sampling occurred in early 2020) will determine whether or not aquaculture is contributing to a sustained impact on key ecosystem assets in the region. The second and third round of field sampling for the pelagic/oceanographic component of the monitoring program was completed in June 2021 and May 2022, respectively. The second round of field sampling for the seagrass monitoring component of the program was completed in June 2021.

The results of these environmental monitoring programs will also become important to help quantify the benefits of the growing seaweed aquaculture industry in terms of nutrient offsets and Integrated Multi-trophic Aquaculture (IMTA) for example, which is discussed later in the report.

Annual environmental monitoring reports

Submission rates for EMPs for the Tuna sector were 100% in 2020-21. Note: the reporting period for the Tuna sector is from December 2020 to November 2021 to align with the Tuna production cycle.

Development

Of the 12 reports submitted for the 2020-21 EMP reporting period, 8 licences were reported to have farming structures (seacages) on site. Seven of these sites were actively farming and one site was used for holding Tuna broodstock. One site reported no farming due to not enough Tuna quota. The remaining three sites were used for maintenance and storing of seacages between production periods.

Biomass

Wild caught juvenile SBT were moved to off-shore sea-pontoons between December 2020 and February 2021 at an average whole weight of 14.5 kilograms (kg). Harvesting of SBT largely occurred 6 months after stocking during July-August 2021. The average whole weight of farmed SBT at harvest in 2021 was 23.5 kg.

At the site level, individual licence conditions state that the maximum biomass of SBT held on an aquaculture site at any one time cannot exceed 6 t of stock per ha. In 2020-21, no sites were reported to exceed this stocking density.

The maximum amount of farmed SBT was recorded in May during the 2020-21 reporting period, totaling approximately 6 724 t (representing an average of 3.7 t per farmed ha).

Feed inputs

Farmed SBT are fed their natural diet of small whole baitfish, which is largely sourced locally from the commercial sardine fishery which operates in Spencer Gulf and along South Australia's West Coast (including Kangaroo Island). This fishery is sustainably managed under the SASF Management Plan and is MSC certified. Approximately 47 774 t of baitfish were used by the Tuna industry in 2020-21, of which 10% were imported. Imported baitfish are managed under strict biosecurity conditions stipulated by the Commonwealth Department of Agriculture, Water and the Environment. Feed conversion ratios are better than their wild counterparts due to farmed SBT not having to use high energy to escape predators or migrate.

Reported interactions and escapes

As part of marine licence EMP reporting requirements, licence holders are required to submit information regarding any negative interactions with seabirds and large marine vertebrates that occurred on their licensed site during each reporting year. There were no reported negative interactions on a licensed Tuna aquaculture site during 2020-21.

The Tuna sector uses 3 m high seal jump fences, which are considered by the industry to be highly effective in minimizing interactions with Long-nosed fur seals and Australian sea-lions. Daily removal of any dead or sick SBT also contributes to a low level of interactions in the Tuna sector.

Licence holders are also required to submit information regarding any stock escape events that occurred on their licensed sites. There were no escape events reported by the Tuna sector in 2020-21. There is some theft of stock reported by the industry, and this is reflected in annual audits of numbers of SBT in and out of the farms by the Australian Fisheries Management Authority.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

Two requests (veterinary prescriptions) for the use of Praziquantel from the Tuna sector were assessed and approved in 2020-21. Praziquantel is used by the industry, under veterinarian supervision, to successfully reduce parasitic blood fluke (*Cardicola forsteri*) infestations in SBT and maintain fish health. Praziquantel (used in medicines for humans and other livestock industries) has reduced SBT mortalities from approximately 14% per year to less than 1% per year in 2020. Off-label use assists industry with data collection towards permitting or registration of the product with the APVMA.

APVMA have issued two Minor Use Permits one for the substance "Parapraz Flukicide", containing 42 grams per litre of Praziquantel as the only active constituent for the treatment of blood fluke in SBT (PER 85738). A second Minor Use Permit for the use of praziquantel for the treatment of blood fluke in SBT has since been issued by the APVMA (PER 88128). The permits are limited to the jurisdiction of South Australia and further limited to people employed by a SBT farm, who are using the product under the direction of a veterinarian.

Reported APVMA registered and permitted veterinary medicines:

The veterinary medicine Praziquantel was reported to be used by six Tuna sites during the 2020-21 EMP reporting period, as permitted by the APVMA.

Livestock translocations

No livestock translocations were applied for or approved during 2020-21 for the Tuna sector.

Disease management and surveillance

No unusually high and unexplained mortalities, nor suspected or confirmed notifiable disease were reported to PIRSA during the 2020-21 period for the Tuna sector. Similarly, no disease investigations or emergency disease responses were required for the Tuna sector during this period.

Finfish

Overview of the industry

The marine Finfish aquaculture sector is well established, with significant growth in production over the years. The species farmed by this sector is the Yellowtail Kingfish (YTK) (Seriola lalandi).

Marine Finfish farming represents a high performing sector of the South Australian aquaculture industry. In 2020-21, there were 18 Finfish farms licensed by PIRSA, occupying 628 ha of water and operated by one company. Finfish licences were located in waters along the west coast of Spencer Gulf at Fitzgerald Bay, Arno Bay, and Louth Bay and Boston Bay near Port Lincoln. Individual Finfish aquaculture licences are listed in Appendix 1.

The industry is based on the on-growing of hatchery-reared YTK fingerlings from selectively bred broodstock originally caught in South Australian waters in accordance with the *Fisheries Management Act 2007*. Juveniles are moved to sea-pontoons (40-44 m diameter) where they are grown out to market size. Fingerlings are transferred to marine sea-pontoons at ~15-30 g, fed on specially formulated manufactured diets, and grown out at sea for ~12–32 months until they are harvested at either 1-1.5 kg or 4.5 kg. For a summary of production and value, and other key economic indicators and trends for the Kingfish aquaculture sector, see Marine Finfish farming Economic Indicators Dashboard 2020-21.

The environmental impacts of sea-pontoon Finfish farming have been well described and include impacts on biogeochemical processes, seagrasses and benthic communities (Tanner and Bryars 2007, Tanner *et al.* 2007). These impacts are primarily associated with dissolved nutrients and chemicals from fish metabolism and solid waste from faeces and excess feed which are predominantly dispersed in the water column (~85%), with the remainder deposited on the underlying seafloor. Recently, CleanSeas Seafood Limited, a YTK licence holder, has formed a collaboration with CH4 Australia Pty Ltd, a company focused on the production and harvest of red seaweed *Asparagopsis* for methane mitigation in livestock, to farm red seaweed near YTK sea-cages which may assist with nutrient offsets for the industry.

Biomass limits for both individual sites and zone policies are developed to minimise the effects on the environment the Finfish industry may have within their relative growing regions. The EMP process provides ongoing environmental monitoring information required to identify and control the occurrence of any impacts the Finfish sector may present on both individual sites and a whole of sector level. In addition, it is a legislative requirement for licence holders to fallow or move sea-pontoons each year to provide the seafloor time to recover unless otherwise approved by the Minister.

Environment

Site-specific environmental monitoring programs

The holders of Finfish aquaculture licences are required to undertake specific EMPs that are tailored to the area in which they operate. These EMPs are designed by PIRSA and the Environment Protection Authority (EPA). The specific purpose of the EMP varies but the overall aim is to monitor changes in the environment that may reflect an impact as a result of Finfish aquaculture. In addition to site-specific EMP's, the licence holders of Finfish aquaculture licences are required to provide a monthy report on total biomass, feed added and number of fish per cage.

The Boston Bay and Louth Bay EMPs aim to assess the impact of an increased biomass at a site and regional level. The site level EMPs comprise of benthic video to monitor the benthic habitat at and near the sea-cages for accumulation of debris, waste feed, build-up of harmful algal matts, and changes to the quantity and health of seagrasses. The regional level EMPs, introduced in 2020-21, comprise of benthic video and are designed to specifically monitor changes to the quantity, condition and health of seagrasses that are in the plume of Finfish nutrients. Regional EMPs are also designed to be the same methodology as the regional environmental program described below to increase the amount of data collected.

The Boston Bay EMP has been in place since 2016, and results to date demonstrate no significant impact of Finfish farming at the site level. In 2021, the EMP was amended to focus on off-site locations and seagrass health. A Louth Bay EMP was implemented in October 2017 when the site was first used to hold stock, comprising benthic video on the site. An amended Louth Bay EMP was introduced in April 2020 in response to higher biomass held on the site. The new program includes site benthic video and regional benthic video that focusses on seagrass condition and density. Data from these programs will contribute to the regional aquaculture environmental monitoring program (AEMP) detailed below.

The Arno Bay EMP was originally designed in 2019 to use benthic video footage to monitor changes in unidentified benthic matts (noting benthic algal matts are an environmental signal of nutrient enrichment) and changes to the small amount of seagrasses that occur within the Arno Bay aquaculture zone. Two years of data collection and confirmation the unidentified matts were mussel shell accumulation and not benthic algal matts, led to a revision of the Arno Bay EMP in 2021 to focus on site level video and areas where seagrass was previously identified. Site level video is designed to monitor the benthic habitat at and near the sea-cages for accumulation of debris, waste feed, potential build-up of harmful algal matts, and changes to the quantity and health of seagrasses.

The Fitzgerald Bay EMP comprises site and regional monitoring through benthic video footage. The benthic habitat at the Fitzgerald Bay sites is sand, however, there are significant seagrass meadows near-by. Site level video is designed to monitor the benthic habitat at and near the sea-cages for accumulation of debris, waste feed and potential build-up of harmful algal matts. The regional level monitoring contributes to a research project being undertaken by SARDI and the EPA on potential impacts of Finfish nutrients on seagrasses. Using benthic video, changes to the seagrass density, health and condition will be monitored. This program commenced in 2021 prior to Finfish farming in Fitzgerald Bay and is undertaken on an annual basis during peak biomass (typically May). For more information, see the following link:

www.pir.sa.gov.au/primary_industry/aquaculture/marine_aquaculture/finfish_fitzgerald_bay

A research project has been developed to assess the influence of finfish aquaculture derived nutrients on seagrasses in Fitzgerald Bay. The four-year research project, developed by SARDI, PIRSA, Clean Seas and the EPA, was approved by the FRDC and commenced in July 2019, with the first sampling undertaken in May 2020 (representing a baseline dataset). The next round of sampling will be undertaken in May 2023, two years after Finfish farming commenced in Fitzgerald Bay. This research will provide a better understanding of potential impacts and help inform future management strategies if required. One of the outputs of this research will be a model to assess future management of aquaculture to minimise any future impacts on seagrasses at Fitzgerald Bay and other locations where Finfish farming occurs. For more information, see the following link: www.frdc.com.au/project/2018-186.

Lower Eyre regional aquaculture environmental monitoring program (AEMP)

In 2015, a new regional aquaculture environmental monitoring program (AEMP) was developed for the Finfish and Tuna aquaculture sectors in lower Eyre Peninsula. The program is designed over a four year cycle with a review in the fourth year to inform the design of the next four-year cycle. The program is designed to describe the overall health of the region with respect to aquaculture impacts rather than monitoring at the site or lease scale, in response to recognition that the majority of nutrient waste from Finfish and Tuna licensed sites is dissolved in the water column and is carried offsite. The monitoring program was developed in consultation with the Tuna and Finfish aquaculture industries, PIRSA, the EPA and SARDI.

The program was divided into a pelagic and oceanographic component and a benthic component. Information collected and analysed for the first four-year regional program (2015-2019) included water quality, oceanography, nutrients, bacteria and benthic infauna, all of which contribute to understanding impacts of aquaculture at a regional and zone scale and to an existing hydrodynamic and biogeochemical model for Lower Spencer Gulf.

The objectives of the pelagic and oceanography component were to:

- determine baseline values and the extent of environmental, chemical and biological variability in relation to water
 quality and planktonic ecosystem composition to assess past (if available) and future changes in the trophic state of
 the Boston Bay and the Lincoln (inner sector) aguaculture zones and connected coastal systems, and
- use the collected data and aquaculture feed inputs to update and validate the oceanographic model for Spencer Gulf to assist in regional aquaculture planning and management.

The objectives of the benthic component were to:

- determine if there is any regional scale effect of tuna and finfish aquaculture on infauna in and around the Boston Bay and the Lincoln (inner sector) aquaculture zones, and
- determine if the infauna assemblages show any change between 2016 and 2018, the two years in which sampling was undertaken.
- analyse the time series of infauna data sampled for the tuna and finfish sectors between 2005 and 2014 to determine any temporal and spatial patterns in the data.

Results from the 2015-2019 regional AEMP found:

- significant spatial and temporal variations in the physical environment, circulation, water quality and planktonic ecosystem composition, including
 - o nutrients, chlorophyll a, phytoplankton abundance, and community composition, harmful algal bloom (HAB) species and frequency, and planktonic community size structure and composition, showed inshore sites within Boston and Louth Bay's differ significantly from offshore sites. Collectively, these trends are consistent with impacts expected from anthropogenic nutrient enrichment, which there are a number of sources in the area including aquaculture. The results are supported by oceanographic modelling, which provides a greater understanding of natural and anthropogenic nutrient supply, connectivity, and dispersal in the region and at the scale of the gulf.
 - while nutrient and chlorophyl a concentrations at the regional scale were elevated above background levels, they were generally low and below the Australian and New Zealand Environment and Conservation Council (ANZECC) water quality guidelines 2000.
 - the planktonic assemblage and water quality results provide enough sensitivity to indicate that aquaculture is having a detectable impact on water quality and trophic state at the inshore sites within Boston and Louth

Bay's. The results also provide a baseline and a set of multiple, complimentary indicators for explaining future changes, natural or anthropogenic.

both spatial and temporal variation were detected in the infaunal assemblages in the Boston Bay and Lincoln (inner)
aquaculture zones, but there was no indication that aquaculture has a significant impact on infauna. Instead, there
were differences between groups of reference sites in both zones, consistent with a naturally occurring north-south
gradient in infaunal assemblages. A similar result was found for time series analysis undertaken on samples collected
between 2005 and 2014.

Given the pelagic and oceanographic results from the 2015-19 AEMP indicated that aquaculture may be having an impact on the pelagic component of the ecosystem in the physically connected inshore regions of Boston and Louth Bay, the 2019–2023 AEMP is undertaking more detailed investigations into the fate and consequences of the nutrients being added to the system. In particular, how these nutrients might be affecting seagrass in the region. The benthic component of previous monitoring programs focused on infauna and did not to demonstrate an impact at compliance sites outside of lease boundaries, or on a regional scale and hence this component of the AEMP has been scaled back to approximately every five years. The 2019-23 AEMP will instead focus on seagrass communities located within the bays near Port Lincoln and Louth Bay. Combined with pelagic (lower trophic) ecosystem, water quality, and oceanographic monitoring, and hydrodynamic and biogeochemical modelling, this next monitoring program (first sampling occurred in early 2020) will determine whether or not aquaculture is contributing to sustained impact on key ecosystem assets in the region. The second round of field sampling for the pelagic/oceanographic component of the monitoring program was completed in June 2021. The second round of field sampling for the seagrass monitoring component of the program was completed in June 2022.

The results of these environmental monitoring programs will also become important to help quantify the benefits of the growing seaweed aquaculture industry in terms of nutrient offsets and Integrated Multi-trophic Aquaculture (IMTA) for example, which is discussed later in the report.

Annual environmental monitoring reports

Submission rates for EMPs for the Finfish sector were 100% in 2020-21. Note: the reporting period for the Finfish sector is from December 2020 to November 2021.

Development

Of the 18 reports submitted for the 2020-21 EMP reporting period, 14 licences were reported to be actively farming YTK and one site was used for maintenance of sea-cages.

Biomass

The maximum amount of YTK farmed across all sites within the marine Finfish sector was recorded in April (3 734 t) during the 2020-21 reporting period. Six of these sites are located within the Arno Bay aquaculture zone policy which reported a maximum amount of Finfish on site during the month of March (1 388 t). The remaining 9 sites are located within Lower Eyre Peninsula aquaculture zone policy and reported a maximum amount of Finfish on site during the month of January (1 292 t; Boston Bay) and June (1 885 t; Louth Bay). The marine production cycle for YTK can take up to 32 months, therefore the stock on site at any one time does not necessarily reflect the total annual production sold (2 825 t in 2020-21). At the site level, individual licence conditions state that the maximum biomass of Finfish held on an aquaculture site at any one time cannot exceed 15 t of stock per ha (unless otherwise approved by the Minister). In 2020-21, seven of the eight Finfish sites in Boston Bay were licensed to farm at 20 or 41.25 t of stock per ha with a maximum biomass across all sites not to exceed the aquaculture zone biomass limit of 1 750 t. In 2020-21, the one Finfish site located in Louth Bay was licensed to farm 40 t of stock per ha with a maximum biomass (recorded in June – 1 885 t) not to exceed the aquaculture zone biomass limit of 2 270 t.

Feed Inputs

Farmed YTK are fed commercially produced manufactured pellets. A total of approximately 7 388 t of pellets were used across all sites within the marine Finfish sector in 2020-21. Sites located within the Arno Bay and Lower Eyre Peninsula aquaculture zone policies reported a total of 1 872 t and 5 516 t, respectively.

Reported Interactions and escapes

As part of marine licence EMP reporting requirements, licence holders are required to submit information regarding any negative interactions with seabirds and large marine vertebrates that occurred on their licensed site during each reporting year. A total of 44 interactions, involving 82 Long-nosed fur seals were reported on licensed Finfish sites in the Boston Bay and Louth Bay aquaculture zones during 2020-21. No interactions resulted in harm to the seal.

Licence holders are also required to submit information regarding any stock escape events that occurred on their licensed sites. In 2020-21, a total of 3 Finfish escape events were reported for Arno Bay and Louth Bay aquaculture zones, resulting in a total of approximately 1 021 fish escaping. Of the escaped fish, none were reported to have been recaptured. A summary of the escape events can be found at www.l/pir.sa.gov.au/aquaculture/monitoring and assessment/register - finfish escape.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

A total of 22 requests (veterinary prescriptions) were assessed and approved in 2020-21. Two requests for the use of Praziquantel from the Finfish sector were 2020-21 were approved. Praziquantel has been used by the industry, under veterinarian supervision, to successfully reduce parasitic blood (*Paradeontacylix* spp.), skin (*Benedenia seriolae*) and gill fluke (*Zeuxapta seriolae*) infestations. Two requests (veterinary prescription) for the antibiotic Oxytetracycline were also approved as a treatment to control systemic bacterial infections. Eighteen requests (veterinary prescriptions) for the use of AQUI-S were approved for anesthetic purposes (routine husbandry requirement).

Reported APVMA registered and permitted veterinary medicines

A total of six Finfish sites reported the use of the permitted veterinary medicine, Hydrogen Peroxide (APVMA Permit PER 88576), to control fluke infestations in stock during the 2020-21 EMP reporting period. Seven Finfish sites also reported the use Praziquantel to control parasites, as permitted by the APVMA.

Livestock translocations

The existing licence holder within the Finfish sector supplies their own fingerlings from a purpose built hatchery located at Arno Bay. As such, no livestock translocation requests were approved during the 2020-21 period for the marine Finfish sector.

Disease management and surveillance

One unusually high mortality event was reported to PIRSA during the 2020-21 period for the Finfish sector, the cause was attributed to environmental conditions, with notifiable and infectious disease ruled out as part of the investigation.

Marine Abalone

Overview of the industry

The sector is typically based on the grow-out of hatchery reared Greenlip Abalone (*Haliotis laevigata*) spat, which are moved to concrete benthic structures ('Abitats') where they are grown out to market size.

In 2020-21, there were five marine Abalone sites licensed by PIRSA which occupied 169 ha of water. Three sites reported to have farming structures on site, of which two were stocked with Abalone. One licence had no developement and the remaining licence was relatively new and was in the process of building benthic farming structures. Individual marine Abalone aquaculture licences are listed in Appendix 1.

The marine Abalone sector is still trialing suitable benthic farming methods and production in this sector in 2020-21 was minimal. It is anticipated Abalone would be held for a grow-out period of approximately three years and typically fed naturally occurring marine algae that drifts past the abalone. For a summary of production and value, and other key economic indicators and trends for the marine and landbased Abalone aquaculture sectors, see Abalone farming Economic Indicators Dashboard 2020-21.

Biomass limits for both individual sites and zone policies are developed to protect the environment from any ecological impacts that the marine Abalone sector may have. To protect the benthic environment, licence conditions on existing marine Abalone sites require the placement of benthic concrete structures to be at least 3 m from seagrass or sensitive habitat.

Site-specific monitoring programs are in place for the marine Abalone sector, however, as there is no commercial-scale production, these have not yet been implemented. The monitoring programs are comprised of benthic video and will provide ongoing environmental monitoring information required to adaptively identify and manage any impacts Abalone aquaculture may have. Specifically, monitoring is designed to assess any impacts to nearby seagrass species from feed inputs.

Environment

Annual environmental monitoring reports

Three of the five licences for the marine Abalone sector submitted an EMP in 2020-21, however, only one was received on time. Education about the importance of the information for regulating the aquaculture industry is promoted. However failure to

submit an EMP report where required may result in the matter being referred to the PIRSA Compliance Unit for further action. Late or non-submitted EMP reports are also considered during the assessment of applications submitted for lease renewal.

Development

Three Abalone licences reported having farming structures on site during the 2020-21 reporting period as they were conducting trials.

Biomass

During the 2020-21 reporting period, only two sites reported to have minimal stock on site (maximum amount recorded in May).

Feed Inputs

Farmed Abalone can be fed commercially produced manufactured pellets or naturally occurring drift algae. No feed was used during 2020-21.

Reported Interactions and escapes

No interaction or escape events were reported by the marine Abalone sector during 2020-21.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

No chemical use approvals were requested by the marine Abalone sector in 2020-21.

Reported APVMA registered and permitted veterinary medicines

No chemical use was reported by the marine Abalone sector in 2020-21.

Livestock translocations

One livestock translocation approval was requested by the marine Abalone sector for 2020-21. Hatchery reared Greenlip Abalone were translocated from a South Australian Landbased site to a South Australian in-sea site.

Disease management and surveillance

No unusually high and unexplained mortalities, nor suspected or confirmed notifiable diseases were reported to PIRSA during the 2020-21 period for the marine Abalone sector. One site reported a number of Abalone had been eaten by Whelks and all mortalities were removed from site. No disease investigations or emergency disease responses were required for the sector during this period. On 4 May 2021, Abalone Viral Ganglioneuritis (AVG) was detected in wild abalone near Cape Nelson, Victoria. PIRSA formed an AVG Response Working Group led by the South Australian Chief Veterinary Officer (CVO) to monitor and respond to the Victorian AVG outbreak, which included reviewing risk assessments and predictive oceanography on the South Australia/Victoria boarder, updating legislation under the <u>Livestock Act 1997</u> and <u>Fisheries Management Act 2007</u> and active surveillance of wild abalone in South Australia on reefs nearest the Victorian boarder.

Mussels

Overview of the industry

The Mussel sector is well established in the waters of Boston and Louth Bays, near Port Lincoln, with 28 of the 32 farms covering 348 ha in 2020-21. The remaining four sites are located near Wallaroo covering a further 170 ha. Individual Mussel aquaculture licences are listed in Appendix 1. The species farmed by this sector is the Blue Mussel (*Mytilus galloprovincialis*), and trials are being undertaken for cultivating red algae (*Asparagopsis armata*). Blue Mussels are grown using long-line culture. Long-lining involves a system of horizontal ropes with buoys to provide flotation, to which vertical droppers are attached every 1–4 m, depending on site conditions. Long-lines are used for spat collection, as well as for on-growing juvenile Mussels to market size.

Currently, Blue Mussel spat are collected from the wild on spat collectors, which are fibrous, 'hairy' looking ropes hung from long-lines during the peak spawning season (June to September) in areas known to have good mussel 'spatfall'. After ~6 months, juveniles (12 millimetres (mm) long) are transferred from the spat collectors to grow-out long-lines. The juvenile Mussels are separated from each other by passing through a mussel de-clumping machine and then feeding them through a funnel onto a grow-out rope. A cotton stocking, known as a 'mussock', is placed around the grow-out rope to hold the juvenile Mussels against the rope. As the Mussels grow, they re-attach themselves to the ropes. In time, the mussock disintegrates leaving the Mussels to grow for a further 8–12 months. Mussels are generally harvested after a period of 18 months at ~10–11 centimetre (cm) length. For a summary of production and value, and other key economic indicators and trends for the Mussel aquaculture sector, see Mussel farming Economic Indicators Dashboard 2020-21.

Blue Mussel spat collection from the wild can be unreliable and inconsistent, and in poor collection seasons can impact the industry significantly. Many factors influence the number of spat collected, including water currents, climatic variations or biofouling on the ropes, which can all prevent spat from settling.

Environment

Annual environmental monitoring reports

Submission rates for EMPs for the Mussel sector were 100% in 2020-21 and a majority were submitted on time (88%). PIRSA follow up all late or non-submitted EMP reports with licence holders. Education about the importance of the information for

regulating the aquaculture industry is promoted. However failure to submit an EMP report where required may result in the matter being referred to the PIRSA Compliance Unit for further action. Late or non-submitted EMP reports are also considered during the assessment of applications submitted for lease renewal.

Development

Of the 32 reports received for the 2020-21 EMP reporting period, 25 or 86% of the Mussel licensees reported having farming structures and stock on the site. All active farming occurred within the Port Lincoln region.

Biomass

Licence conditions limiting the amount of Mussels farmed on a site relate to infrastructure not biomass, and state that the total length of backbone (the supporting structure on the surface for all underwater lines on which the Mussels are attached) held on site does not exceed 560 m per ha with no more than 15 m of submerged line per metre of backbone (unless otherwise approved by the Minister).

During the 2020-21 EMP reporting period, all licensees reported being within the total allowable length of backbone and submerged line on the site. On average, the length of backbone infrastructure across all farmed sites within the region during the 2020-21 reporting period was approximately 291 m of backbone per ha, and 7 m of submerged line per metre of backbone.

Feed Inputs

Mussels are filter feeders and do not require supplementary feed.

Reported Interactions and escapes

No interaction or escape events were reported during 2020-21.

Benthic Video

Benthic video footage submitted by the Mussel sector as part of their 2020-21 EMP requirements has demonstrated Mussel shell accumulation under farming structures at some of the sites. The cause of this is likely to be natural settlement of Mussel and Oyster spat on adult Mussels, the additional weight of which results in the Mussel falling off the long-line. The Mussel sector is working with PIRSA to address the issue, including reviewing harvesting and settlement practices to avoid "double settlement" and loss of Mussels during the harvest process.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

No chemical use approvals were requested by the Mussel sector in 2020-21.

Reported APVMA registered and permitted veterinary medicines

No chemical use was reported by the Mussel sector in 2020-21.

Livestock translocations

No livestock translocation approvals were requested during 2020-21 for the Mussel sector.

Disease management and surveillance

No unusually high and unexplained mortalities, nor suspected or confirmed notifiable diseases were reported to PIRSA during the 2020-21 period for the Mussel sector. No disease investigations or emergency disease responses were required for the sector during this period.

Oysters

Overview of the industry

The Oyster sector is well established in South Australia. The majority of farmed Oysters are Pacific Oysters (*Magallana gigas*; scientific name change from *Crassostrea gigas* in 2021) with some farmers trialing Native Oysters (*Ostrea angasi*) and Razorfish (*Pinna bicolor*). Oysters are farmed in South Australia in seven main growing regions (Coffin Bay, Streaky Bay, Smoky Bay, Cowell, Denial Bay/Ceduna, Kangaroo Island, Yorke Peninsula) with 350 licensed sites covering approximately 963 ha in 2020-21. Individual Oyster aquaculture licences are listed in Appendix 1.

Up until January 2016, the majority (80%) of Pacific Oyster spat were sourced from Tasmania. However, an outbreak of POMS in Tasmania in January 2016 resulted in South Australia implementing a ban of Oyster imports from Tasmania (see Oysters-pomble section for more detail) as a biosecurity measure to protect South Australian Oyster stocks. Since then, the South Australian Government, Tasmanian Oyster hatcheries and South Australian Oyster farmers have developed or expanded their own hatcheries in South Australia to be able to provide locally grown stock. To facilitate this, the South Australian Government provided grants to two local South Australian Oyster hatcheries, increased capacity at SARDI to produce spat for the industry, and fast tracked two new Oyster hatchery developments.

South Australian Oysters are predominately grown intertidally using a rack and rail system, a long-line system or a combination of both. Fixed 'rack and rail' culture systems have been shown to cause localised impacts to some seagrass species, as the racks and baskets are stationary and can shade the seagrass beneath. Now Oyster farmers mainly use the Baker-Schultz-Turner (BST) long-line system developed by the Turner family of Cowell, to allow Oyster growers to alter the height of the free-swinging oyster baskets in the water column to reduce exposure to storm events, high air temperatures and mudworm. This system creates minimal shading effect on seagrass.

Innovative new methods of farming Oysters have been trialed in South Australia. Floating Oyster mesh bags and grow out tumblers attached to longlines are new farming methods developed by Zapco Aquaculture. The Oyster mesh bags expose Oysters to nutrient and oxygen rich surface water which enables the Oysters to grow much faster than traditional intertidal Oyster farming methods. The grow out tumblers rotate with the tide, promoting faster spat growth and allowing Oysters to develop a uniform shape. Similarly, Flip Farm Systems have developed a basket system attached to a single longline that is extremely robust and efficient. The rotation system uses a mechanical action device mounted to the side of a boat to flip baskets as the boat moves along the line. These new farming methods are less labour intensive and rely on less infrastructure (e.g. posts) in comparison to current systems. A reduced number of posts means less physical disturbance to the benthic

environment and associated sedimentation effects on surrounding habitats. The long-lines also move with the tide which reduces the effect of prolonged shading from Oyster baskets or bags on seagrass habitat.

Typically Oyster spat are placed into baskets at ~5–15 (mm) shell length and on-grown for ~12-24 months. During this time, Oysters are removed from the baskets and graded several times before they are sold. Grading the Oysters minimises shell fouling and helps the development of optimal shell quality for marketing. Since 2016 until 2020-21, the local hatcheries were having difficulty in producing spat larger than 3 mm for on-growing which has had longer term issues with survivability of the spat and overall production of mature Oysters. Local hatcheries are currently working towards improving spat survivability, for example by on-growing small spat on Oyster leases to achieve larger sizes prior to being grown on commercial leases.

Environment

Annual environmental monitoring reports

Submission rates for EMPs for the Oyster sector were 93% in 2020-21; 40% of these were up to three months late. The remaining 7% did not submit an EMP report for 2020-21 because there was either no development on site or they had transferred the licence to another party and were therefore no longer responsible for the licence.

PIRSA follow up all late or non-submitted EMP reports with licence holders. Education about the importance of the information for regulating the aquaculture industry is promoted. However failure to submit an EMP report where required may result in the matter being referred to the PIRSA Compliance Unit for further action. Late or non-submitted EMP reports are also considered during the assessment of applications submitted for lease renewal.

Development

Of the reports received for the 2020-21 EMP reporting period, 282 (87%) reported having farming structures and 258 (79%) reported having stock (Pacific Oyster and/or Native Oysters) on the site.

Biomass

Licence conditions limiting the amount of Oysters farmed on a site relate to infrastructure (which in turn limit biomass), and state that the licence holder must ensure that the structures used to farm Oysters on a site does not exceed a specified amount per ha (e.g. does not exceed 3 km of longline per ha and/or 1 km of baskets on racking per ha).

Of the reports received for the 2020-21 EMP reporting period, 77 licence holders (or 27%) reported having exceeded the total allowable length of line on the site. While this does not necessarily translate to an environmental impact, PIRSA has been working with the South Australian Oyster Growers Association (SAOGA) to address the issue and have developed the <u>Standard Lease and Licence Condition Policy</u> (see page 26 for more information) that addresses new biomass limits for some of the Oyster growing regions, based on historical use and previous research undertaken by SARDI to determine carrying capacity (biomass) in Oyster growing regions.

Feed Inputs

Oysters are filter feeders and do not require supplementary feed.

Reported Interactions and escapes

During the 2020-21 reporting period, sea lions, sea birds, dolphins and sharks were observed visiting two Oyster sites, however, these interactions were not adverse in nature.

Feral oysters

Of the reports received for the 2020-21 EMP reporting period, 33 (10%) stated feral Oysters (wild Pacific Oysters) were found in the lease area. All feral Oysters were reported to have been removed from the area and disposed of at landbased facilities.

Feral oyster populations within, and adjacent to, growing regions pose a potential POMS risk to the Oyster industry. To reduce this potential risk of disease, the growing regions participate in a feral Oyster monitoring and management program. Led by SAOGA, feral oyster knock down events are organised as needed to reduce feral oyster numbers in the growing region.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

No chemical use approvals were requested by the Oyster sector in 2020-21.

Reported APVMA registered and permitted veterinary medicines

No chemical use was reported for the Oyster sector in 2020-21.

Livestock translocations

There was one translocation approval during 2020-21 for the Oyster sector. This was the first translocation of Pacific Oysters from Tasmania to South Australia since 2016 when the detection of POMS in Tasmania resulted in South Australia implementing strict conditions for Oyster imports from Tasmania. This translocation of Pacific Oyster complied with the Protocol for importation of hatchery reared Pacific Oysters from POMS jurisdictions, which was developed with industry and scientific experts (internal and external to government). This protocol provides very high-level risk mitigation that exceeds World Animal Health (OIE) requirements and meets industry expectations. It includes testing and monitoring at a biosecure Tasmanian hatchery (Tasmanian CVO approved), with further post-border controls (e.g. testing and monitoring in a biosecure quarantine facility (approved by the South Australian CVO) in South Australia.

Disease management and surveillance

One mortality event was reported to PIRSA during the 2020-21 period for the sector. In response to this event, the PIRSA Pacific Oyster Mortality Syndrome (POMS) Disease Response Plan was enacted and the event was investigated. No notifiable or infectious diseases were detected through laboratory testing (PIRSA's primary role as hazard leader for animal disease emergency responses).

In 2017, PIRSA developed a surveillance strategy for POMS to enhance early detection and rapid response to the disease. Since this time, Oysters have been regularly submitted to the South Australian veterinary laboratory for testing as part of the statewide early detection of POMS. In 2020-21, a total of 3177-5119 Oysters (tissue from 5 oysters were included in one sample tube when oysters were over 5 mm in size, whereas up to 30 oysters were included in one sample tube when oysters were under 5 mm) from across South Australia (hatcheries, nurseries, grow-out and feral oysters in growing regions) (n = 781 samples) were processed and tested negative OsHV-1 (microvariant, which is the virus that causes POMS). For further information on the Tasmanian outbreak of POMS and the indirect effect on South Australia's Oyster industry, see "External factors or events affecting the aquaculture industry in South Australia".

Landbased

Overview of the industry

The landbased sector is the most diverse of the South Australian aquaculture industry in terms of farming systems and culture species (see below for species farmed). In 2020-21, there were 61 landbased aquaculture licences in South Australia, comprising of Category A (21), B (24), C (10) and D (6). Licences include private businesses, hatcheries (Abalone, Oysters and Finfish), educational and research facilities, as well as Tourism and hobby farm businesses. Individual landbased aquaculture licences are listed in Appendix 1.

The Landbased Abalone, Oyster and Finfish hatcheries contribute significantly to regional economies, creating the majority of the 122 direct jobs in 2020-21, and producing the spat and/or juvenile stock used for marine based aquaculture activities. For a summary of production and value, and other key economic indicators and trends for the landbased aquaculture sector, see the 2020-21 Economic Indicators Dashboards for <u>Abalone</u>, <u>Freshwater Finfish</u>, <u>Marron and Yabby</u>, and <u>Other</u> farming.

Landbased aquaculture licences are located all over South Australia including the Eyre Peninsula, Yorke Peninsula, Kangaroo Island, Adelaide Hills, Murraylands, Fleurieu Peninsula and South East. A number of production systems are used by the landbased aquaculture sector. The most popular systems are pond culture, recirculating aquaculture systems and flow-through systems.

PIRSA regulate the landbased sector by categorising each licence based on the level of work required by PIRSA to manage the risks associated with the activity. The criteria for each category are listed below:

Category A: Small scale operators, which do not discharge wastewater off site, and require minimal aquatic animal health legislation requirements and environmental monitoring e.g. Yabby and marron.

Category B: Small scale operators, which may potentially discharge some waste water off-site, or farm a species with applicable aquatic animal health legislation e.g. Native Finfish.

Category C: Intensive and/or large-scale operators with waste water discharge off-site and/or farm a species with applicable aquatic animal health legislation e.g. Oyster hatcheries.

Category D: Intensive and/or large-scale operators with waste water discharge off-site into the marine environment and/or farm a species with applicable aquatic animal health legislation e.g. Abalone farms.

Environment

Annual environmental monitoring reports

Of the 61 landbased aquaculture licences, 52 (85%) EMPs were submitted in 2020-21; 44% of these were up to three months late. PIRSA follow up all late or non-submitted EMP reports with licence holders. Education about the importance of the information for regulating the aquaculture industry is promoted. However failure to submit an EMP report where required may result in the matter being referred to the PIRSA Compliance Unit for further action. Late or non-submitted EMP reports are also considered during the assessment of applications submitted for lease renewal.

Development

Of the reports received for the 2020-21 EMP reporting period, 38 (75%) reported having stock at the facility.

Species farmed

In 2020-21, the landbased species farmed included the following:

Barramundi (Lates calcarifer) Goldfish (Carassius auratus)

Brown Trout (Salmo trutta), Murray Cod (Maccullochella peelii peelii)

Golden Perch (Macquaria ambigua) Pacific Oyster (Magallana gigas)

Greenlip Abalone (Haliotis laevigata) Rainbow Trout (Oncorhynchus mykiss)

Hairy Marron (Cherax tenuimanus), Silver Perch (Bidyanus bidyanus)

Smooth Marron (Cherax cainii) Yabbies (Cherax destructor)

Sea Lamington (Urchin; *Tripneustes gratilla*) Yellowtail Kingfish (*Seriola lalandi*)

Sea urchin (Heliocidaris erythrogramma) Microalgae (Dunaliella salina)

Tandanus Catfish (*Tandanus tandanus*)

These species were provided with either manufactured or natural aquaculture feed.

Reported Interactions and escapes

No escape events were reported during the 2020-21 reporting period.

Aquatic animal health management

Veterinary medicine use

Off-label approvals under Aquaculture Regulations 2016:

A total of 21 requests (veterinary prescriptions) were assessed and approved in 2020-21 for the landbased sector. Sixteen of these requests were for the use of AQUI-S to address husbandry issues in Finfish hatcheries and three requests were for the use of toltrazuril to treat scuticociliate infections. The remaining two requests were for the use of oxytetracycline and praziquantel.

Reported APVMA registered and permitted veterinary medicines

The use of APVMA veterinary medicine products by the landbased sector were reported in annual EMPs for nine sites in 2020-21. These included the APVMA registered chemical products 2-Phenoxyethanol (Aquatic Anaesthetic; PER 83233), Magnesium Sulphate (PER 86963), Benzocaine (PER 14638), Abamectin (PER 88497), Ovaprim (PER 13800; induces spawning in broodstock), Magnesium Chloride (PER 83238) as well as Epinephrine (PER 80085).

Livestock translocations

Six livestock translocation approvals were requested during 2020-21 for the landbased sector. Species included Rainbow Trout ova, Greenlip Abalone, Barramundi and Silver Perch. Two Abalone farm biosecurity audit certificates were issued for the purposes of livestock trade or translocation requirements during this period.

Disease management and surveillance

One mortality event was reported to PIRSA, and subsequently investigated, during the 2020-21 period for the sector. No notifiable diseases were detected. No emergency disease responses were required during this time.

A total of 1 376 samples were submitted to the South Australian veterinary laboratory for the purpose of health certification (e.g. export requirements for livestock), including 1 226 for the landbased Finfish sector, and 150 for the landbased Abalone sector.

In 2020-21, Oysters from the landbased Oyster sector (hatcheries) were submitted to the South Australian veterinary laboratory as part of the state-wide early detection of POMS. A total of 88 samples from the landbased Oyster sector (hatcheries) tested negative for OsHV-1 microvariant, which is the virus that causes POMS.

On 4 May 2021, Abalone Viral Ganglioneuritis (AVG) was detected in wild abalone near Cape Nelson, Victoria. The Department of Primary Industries and Regions (PIRSA) formed an AVG Response Working Group led by the South Australian CVO to monitor and respond to the Victorian AVG outbreak, which included reviewing risk assessments and predictive oceanography on the South Australia/Victoria boarder, updating legislation under the <u>Livestock Act 1997</u> and <u>Fisheries Management Act 2007</u> and active surveillance of wild abalone in South Australia on reefs nearest the Victorian boarder.

Marine algae (seaweed)

Overview of the industry

There is a significant global demand for seaweed for a diverse range of uses including food, fertiliser, nutraceuticals, pharmaceuticals, cosmetics, carbon sequestration, nutrient offset, livestock and aquafeeds, bioremediation, biofuels, bioplastics and bio-polymers. The Australian Seaweed Industry Blueprint outlines the extensive economic, social, and environmental benefits that could be realised through developing an Australian seaweed industry. The blueprint also identifies the various opportunities, barriers and research needed to grow such an industry (see The Official Blueprint for Seaweed in Australian Seaweed Institute). An Australian seaweed industry peak body has been formed which includes a number of seaweed companies (for more information see Australian Sustainable Seaweed Alliance).

The development of a South Australian seaweed industry has been viewed as advantageous for some time, and recent research has brought South Australia closer to realising the environmental and economic benefits of such an industry. The sustainable wild harvest of the required levels of seaweed is unlikely and therefore a seaweed industry needs to be based on aquaculture. South Australia is uniquely positioned to take advantage of the growing international interest in seaweed aquaculture as the state has:

- seaweed endemic to our waters.
- marine areas and coastal land available for farming,
- a world class regulatory framework for aquaculture development,
- international reputation for high-quality seafood, and
- state of the art research and development capabilities.

In recent years, there has been an increasing focus on farming seaweed for commercial purposes in South Australia using similar farming structures used by the Mussel aquaculture sector (floating backbones/longlines). In particular, the farming of a red seaweed *Asparagopsis* for its bioactive compound (Bromoform) which has shown to reduce methane emissions in the livestock industry when a small amount of the seaweed is added to livestock feed. A reduction in methane emissions results in a significant reduction of the total green house gas' in the atmosphere, with the goal of mitigating global climate change. Farming seaweed in the marine environment can also sequester carbon, help reverse the growing levels of excess carbon dioxide in the ocean and reduce ocean acidification.

A key benefit of farming seaweed in South Australian waters is the reduction in coastal anthropogenic dissolved nitrogen (via absorption by the culture stock), including from waste products produced by aquaculture stock. Farming seaweed adjacent to Tuna and Finfish farms will allow excess nutrients to be taken up by the algae and reduce the overall nutrient load from the sectors. The development of Integrated Multi-trophic Aquaculture (IMTA) systems will provide a more sustainable whole of region aquaculture ecosystem and reduce the industry's environmental 'footprint'.

Seaweed is a new and emerging sector within the South Australian aquaculture industry. To date, PIRSA has assessed and approved 48 aquaculture licence applications (landbased and marine; new and variations to existing licences) to farm seaweed (primarily *Asparagopsis*) across several growing regions (e.g. Eyre Peninsula, Kangaroo Island, Yorke Peninsula) and are currently assessing a number of other licence applications. In 2021, PIRSA granted two dedicated seaweed (*Asparagopsis*) aquaculture leases/licences in the Point Pearce (east and west) aquaculture zone near Port Victoria (*Aquaculture* (*Zones – Eastern Spencer Gulf*) *Amendment Policy 2017*). Individual marine algae aquaculture licences are listed in Appendix 1. As seaweed farming is still predominantly under trial, production on all sites is yet to commence and therefore no production results are available

More recently (2022), PIRSA granted a further two dedicated seaweed (*Asparagopsis*) aquaculture leases/licences in the Boston Bay and Louth Bay aquaculture zones (*Aquaculture* (*Zones - Lower Eyre Peninsula*) *Policy* 2013) at Port Lincoln. PIRSA also recently approved a Tuna licence holder to collect naturally occurring seaweed (biofouling) on floating longlines (similar farming structures to the mussel sector) located adjacent to Tuna cages for on-growing and harvesting.

PIRSA supports the sustainable growth of the emerging seaweed aquaculture industry. Recent ESD risk assessments completed for new licences – or for the variation of existing licences – to culture seaweed have identified potential risks related to seaweed biosecurity (pest and disease) and population genetics, primarily through stock translocation if they were to occur. These risks have highlighted the need to control seaweed translocations into and within South Australia to protect the industry and the marine environment.

In response, PIRSA has developed specified Macroalgae Management Areas (MMA's) to ensure seaweed seedstock or broodstock collection (see <u>Broodstock and seedstock collection permits - PIRSA</u>) is undertaken in a manner where aquatic ecosystems and genetic diversity are maintained. Based on scientific literature and advice, the management areas represent the different marine habitats along the coast of South Australia and the likely growing areas for seaweed species, and therefore provide a suitable foundation for delineating areas for managing activities relating to seaweed collection for aquaculture. This includes ensuring seaweed stock originates from the same MMA as the licensed area (or discharge point for landbased aquaculture sites). To complement the new management areas, aquaculture licences permitted to culture seaweed have conditions applied for managing the potential biosecurity and genetic risks.

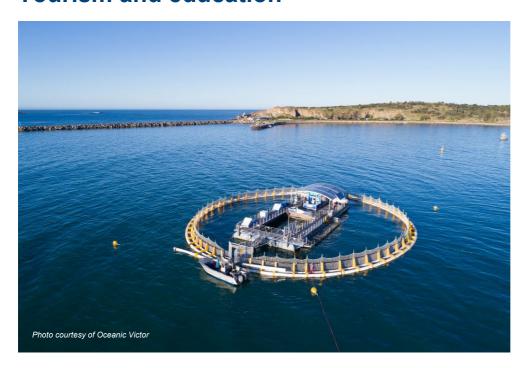
The need for conservative management of disease and genetic risks for the rapidly developing seaweed industry is common across Australia, as identified by the national Seaweed Aquaculture Working Group (under the national Aquaculture Committee), until further research is available. There are a number of research projects occurring around the country to address key knowledge gaps to inform policy and regulation.

A map of the MMA's along with location descriptions for each management area is available on the PIRSA website - www.pir.sa.gov.au/primary industry/aguaculture/marine aguaculture

Research and Investment

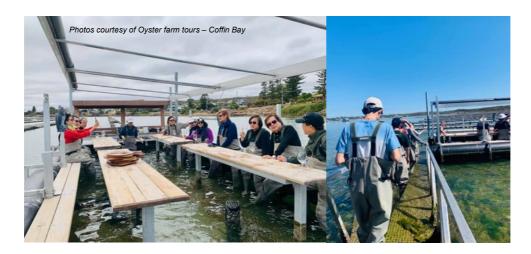
SARDI is currently undertaking research to support the development of a seaweed industry (through production and processing of a variety of species) with State Government funding. In 2020, a pilot research trial for seaweed aquaculture (*Asparagopsis*) led by SARDI / PIRSA, was awarded funding of \$223,340 from FRDC with a co-investment of \$329,331 from CH4 Global. The research team has made significant progress with development of an in-house protocol for testing the bioactive compound bromoform responsible for reducing ruminant methane production, hatchery technology and production infrastructure designs and trials of farming seaweed. Both 'at-sea' and landbased trials have taken place at Port Lincoln, Port Victoria and West Beach, respectively.

In 2021, a \$1.5M project (2 years) funded under the Economic and Business Growth Fund (EBGF) and led by SARDI commenced to help better engage with the private sector to attract new companies into the local aquaculture industry and grow commercial seaweed opportunities through scientific support. The project aims to foster the engagement between commercial industry companies, technical experts and researchers in order to enhance the understanding of seaweed as a raw material along with identifying and resolving constraints that currently exist to large scale seaweed production. SARDI has already partnered with five South Australian based industry partners across the value chain, that will see at-sea and on-land cultivation of seaweeds for a variety of applications in Port Lincoln, Port Victoria, Dry Creek and West Beach.


More recently (2022), a local Tuna farmer and SARDI received an AgriFutures grant to develop natural colour pigments from cultivated native seaweeds for the plant based meat industry.

Additionally, the Federal Government (2021) has invested \$59M into the Marine Bioproducts Cooperative Research Centre (MB CRC), which will help establish South Australia as an international leader in commercial seaweed. The State Government is also investing \$2.6M over the next 10 years into the MB CRC, including contributions from PIRSA (\$2M) and the Department for Industry, Innovation and Services (providing \$600,000 to SARDI).

A new seaweed industry is estimated to be worth \$140M in the next three years and has the capacity to create an additional 3,000 jobs. The industry is likely to contribute significantly to regional South Australia, with increased job opportunities in farming and processing of product, with further jobs created in transport and other flow-on activities. Revenue from processing could add a further \$250M per year to the state's economy. Local aquaculture operators continue to be interested in exploring this diversification opportunity.


Tourism and education

Aquaculture, as well as a primary food source, has an important role in Tourism and education. Aquaculture facilities provide opportunity for students and the public to learn directly about marine and freshwater aquatic environments through a hands-on approach. The Cowell Area School has a current aquaculture program comprising an operating Oyster farm and associated Landbased facilities. There are also a number of other licensed schools and educational facilities (Port Lincoln, Ceduna, Kingston, Lucindale and Kangaroo Island Community Education) that include aquaculture in their curriculum.

In 2020-21, there was one licensed marine aquaculture tourism site (Encounter Bay, near Victor Harbor). This site provides the opportunity for the general public to view, swim with and learn about various marine species found locally in South Australian waters such as Tuna, Abalone, Snapper, Rock Lobster and Yellowtail Kingfish within the safe confines of a sea-cage and floating pontoon equipped with touch tanks. Due to the global COIVD-19 pandemic and resulting lockdowns and travel restrictions, as well as structural work on the Granite Island causeway limiting access to the site for the public, there were no visitors to this site in 2020-21. It is expected this aquaculture tourism operation will be receiving visitors in 2022-23.

In recent years, there has been growing demand for local tourism experiences as a result of an increase in local travel. This has led to some oyster farmers developing floating pontoons or fixed platforms on their sites for tourists to visit, and experience aquaculture produce and learn about how they are farmed. The <u>Aquaculture (Tourism Development) Amendment Act 2021</u> will streamline the assessment and approval process for these types of developments (see "<u>Changes to the Aquaculture Act 2001</u>" section for further information).

Compliance outcomes

PIRSA staff monitor and investigate potential breaches of the <u>Aquaculture Act 2001</u>, <u>Aquaculture Regulations 2016</u> or other relevant legislation (e.g. environmental), based on random and targeted inspections, information received by the public (e.g. Fishwatch) and other government agencies and other stakeholders (including recreational marine resource users), in an efficient and timely manner.

PIRSA aims to work in collaboration with the industry to address and rectify any issues that arise. Subject to the circumstances of any reported non-compliance, PIRSA will apply the most appropriate measures such as education of licence holders, changes in licence conditions, direction to carry out work or further enforcement actions if required.

During 2020-21, Finfish (Port Lincoln, Arno Bay), Oysters (Coffin Bay, Franklin Harbour, Denial Bay, Smoky Bay, St. Peters Island, Haslam, Southbank, Streaky Bay, Perlubie, Wallaroo, Point Pearce, Port Vincent & Coobowie), Mussel (Port Lincoln, Proper Bay, Louth Bay), Tuna (Port Lincoln), and Land-based (Kangaroo Island, Limestone Coast, Mallee) aquaculture sites were inspected by PIRSA staff, with a particular focus on compliance to navigation requirements (marine), condition of leases (requirement to be in good working order), rehabilitation of unused sites (marine) and species farmed (Landbased).

Results from these site inspections indicated most marine sites demonstrated good compliance in relation to navigational requirements (e.g. location and marking of navigational structures, and aquaculture farming structures within the boundaries of the site), the majority of marine based sites were observed to be in good condition, and most Landbased sites were compliant with their licence conditions. Where there was evidence of non-compliance (e.g. incorrect marking of navigation structures, failure to rehabilitate a site), lease and licence holders were contacted, and areas requiring attention were raised. Follow-up inspections of non-compliant sites were undertaken to ensure actions had been taken to address the issue, with the majority of licence and lease holders completing the required action to restore their site(s) to compliance status.

In addition to targeted inspections, Fisheries Officers continued to collect feral Pacific Oyster samples as part of the POMS surveillance program from sites including Ceduna, Coffin Bay, Yorke Peninsula and Kangaroo Island areas. POMS related signage was also maintained within the Port River system. Fisheries Officers addressed numerous general inquiries from growers in relation to lease and licence conditions. A number of questions relating to Oyster biosecurity related rules and preventative measures including translocation risks were received from growers and the general public.

PIRSA also undertook the following activities:

- PIRSA responded to a number of reports regarding escaped Finfish including liaison with the impacted grower.
- Continued to conduct extensive monitoring of Port Lincoln based launch sites, undertook sea-based patrols and conducted joint monitoring activities with SAPOL to assist Industry deal with the annual Tuna theft issue at Port Lincoln

Aquatic animal health and biosecurity

Fish kill and fish health investigations

This section provides a comparison between aquaculture mortality or disease investigations (reported above) and wild fish kill or wild fish health investigations conducted by PIRSA.

For 2020-21, there were two aquaculture related mortality events investigated and 14 wild fish kill or disease investigations reported and investigated (Figure 14). The aquaculture related mortality events were caused by environmental conditions or husbandry practices. The wild fish mortality events were due primarily to environmental or natural occurrences (e.g. water quality, weather event and unusually high or low water temperature). As of 30 June 2021, South Australia has 62 notifiable diseases pursuant to the <u>Livestock Act 1997</u>, which are required to be reported if suspected or detected. No notifiable diseases were detected as a result of fish kill (or fish health) investigations.

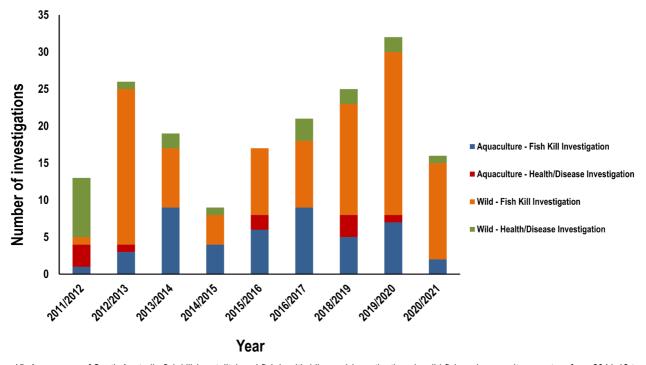


Figure 15. A summary of South Australia fish kill (mortality) and fish health (disease) investigations in wild fish and aquaculture sectors from 2011-12 to 2020-21

Industry initiatives

Marine debris

Adopt-a-Beach Program

A need for a collaborative approach to the regular collection of debris from local beaches on the Eyre Peninsula was identified in 2011 and the local aquaculture industry agreed to undertake marine debris beach clean ups.

Led by the Australian Southern Bluefin Tuna Industry Association (ASBTIA) and supported by the Finfish and Mussel industries, the Adopt-a-Beach Program is a debris clean-up program that covers a coastal area of approximately 160 km located in the Lower Spencer Gulf region, from MacLaren Point to Cape Euler. It includes a number of islands within the Boston Bay area and Spilsby Island (Sir Joseph Banks Group), with the area divided into 15 individual zones which are assigned to/adopted by individual Tuna, Finfish and Mussel companies. Adopted areas range from 6 to 19 km (see www.pir.sa.gov.au/aguaculture/monitoring and assessment/adopt a beach program).

Beach clean ups are undertaken a minimum of four times a year, with clean-up data collected and submitted to the ASBTIA for collation and reporting to PIRSA. Information collected for each "beach" includes the five most common types of items, unusual items and total weight. In 2020-21, approximately 1,810 kg of marine debris was collected from a total of 131 km of beach, over a total of 16 clean up days. Debris consisted predominantly of rope, plastic, drink containers, household rubbish and buoys/floats.

The program also encompasses the collection of non-aquaculture related debris and its disposal in a responsible manner. While some debris, such as ropes and some plastics may be attributed to aquaculture, it is clear that debris originated from a range of sources including commercial and recreational fishing, landbased operations, commercial shipping and the general public.

South Australian Oyster Growers Association (SAOGA) - Coastline Debris Recovery Program

To address legislative requirements, the South Australian oyster industry cleans up debris from the coastline near their farming sites. This has been an ad hoc process with little documentation of what has been achieved. A number of these clean-ups have been coordinated and carried out with the Department for Environment and Water (DEW) staff. The clean-ups are somewhat targeted with some sites identified from DEW marine debris surveys and mapping.

A need for a more collaborative, coordinated, documented and efficient approach to regular debris collection from the local coastline was identified. In September 2015, SAOGA developed a clean-up program called the 'Coastline Debris Recovery Program' in collaboration with PIRSA and DEW. This program was again reviewed in 2022.

This Coastline Debris Recovery Program involves clean-ups identifying areas in eight different regions between Coffin Bay and Denial Bay, South Australia. Hot spots are identified through DEW staff and oyster growers, specifically Coffin Bay, Ceduna and Smoky Bay. Coordinated clean-ups will occur approximately two times per year. Recent clean ups by growers have occurred at Coffin Bay, Cowell, Haslam and Smoky Bay, however, little documentation is available (see SAOGA's March 2021 Newsletter). The Yorke Peninsula farming area covers a small section of the coast between Port Vincent and Stansbury and growers regularly monitor for debris during their farming activities. No debris has been sighted along the coast for some time. Kangaroo Island growers also regularly monitor beaches for debris and have recently undertaken an extensive beach patrol, but no documentation is available on what debris (if any) was collected.

This program is the responsibility of SAOGA, as well as oyster licensees, and will be supported and monitored by the South Australian Government to achieve its desired outcomes.

Oyster Hub project

The Oyster Hub project was developed by the Oyster sector with financial support from the South Australian Government. The purpose of the Oyster Hub project was to provide a web-based tool for the effective management of Oyster stock such as grow-out, conditioning, mortality and translocation. It provides a framework for farmers to record key information for better decision making and dissemination to maximise production efficiency through improved husbandry methods.

The web-based tool now called miShell was launched at the South Australian Oyster Growers Seminar in Smoky Bay in August 2018. Currently, over 30 growers are using the application and interest has also been shown from inter-state.

The Oyster Hub project is now complete with miShell managing the system. MiShell have since provided a number of updates to the program and have recently been awarded a grant to support the implementation of a traceability program that will be linked to stock management to trace stock once it has left the farm.

Oyster basket recycling

In 2013, the EPA, working collaboratively with the <u>South Australian Oyster sector</u>, <u>Regional Development Australia Whyalla and Eyre Peninsula</u>, and the <u>Department for Manufacturing</u>, <u>Innovation</u>, <u>Trade</u>, <u>Resources and Energy</u>, undertook a feasibility study into the recycling of plastic oyster baskets (see <u>www.epa.sa.gov.au/files/477882_oyster_basket_study.pdf</u>).

The aim of the <u>South Australian Oyster Basket Recycling Feasibility Study</u> was to 'identify cost-effective oyster basket recycling options that will value add to the efficient operation of the industry as a whole'. The oyster industry uses 2.5 million baskets annually. Each year about 5–10%, or 150–200 t, of these plastic baskets reach their end of life and must be disposed. Instead of sending the baskets to landfill, many oyster growers have been stockpiling them on their properties until more environmentally sustainable disposal by recycling option becomes available.

The oyster industry developed an Expression of Interest to identify recycling companies that would be interested in taking the baskets at zero cost to industry. One company was identified and commenced a trial of collecting, mulching and recycling the baskets at the agreed zero cost. However, China changed its policy on taking recycled waste in 2018 and it was not financially viable for that company to continue. Since this time, the industry has continued to recycle plastic baskets by using a portable plastic shredder on the back of a truck but it comes with a cost to growers. However, this is the preferred option to dumping at a landfill facility which also occurs a cost. The method of shredding is also very labour intensive as all baskets need to be free of any contaminants (i.e. metals and non-shredding plastics). In late 2020, 40 t of plastic baskets from the Smokey Bay growing region were recycled and the clean-up was reported in SAOGA's December 2020 Newsletter.

SAOGA and South Australian Oyster Research Council (SAORC) have recently been approached by Sarah Prime from Shadowbox, a local Eyre Peninsula entrepreneur who is looking at creating a recycling facility at Arno Bay. This project is at the application stage and SAORC are considering supporting it.

Seafood certification

Third-party aquaculture certification schemes not only provide consumers assurance that their seafood is sustainably and ethically produced, but also provide producers in some instances with greater market access, whilst encouraging them to implement and maintain responsible farming practices throughout their operations. There are multiple worldwide certification programs available to aquaculture, with the South Australian industry successful in achieving certification to some that are considered some of the most robust, reputable and recognised programs in the world.

Friend of the Sea Sustainable Aquaculture certification has been achieved for many of the South Australian aquaculture companies (Clean Seas Seafood Ltd (Australia), Angel Oysters Australia Pty Ltd, Australian Southern Bluefin Tuna Industry Association and all the Tuna companies, and Eyre Peninsula Seafoods Pty Ltd; see www.friendofthesea.org/ for information about this certification). The Friend of the Sea Sustainable Aquaculture certification provides independent assurance to markets that the product has been produced in a healthy, safe and sustainable environment. It involves a rigorous environmental sustainability performance assessment that assesses the whole supply chain from the catch in the wild, through the value adding aquaculture process to final harvesting.

The Aquaculture Stewardship Council (ASC) is an independent, global, non-profit organisation whose role is to recognise, via a certification program, responsibly farmed seafood and to harness consumer preference for seafood products bearing the ASC label of approval. Successful certified aquaculture companies are audited annually to ensure they maintain the ecological sustainable standards of the ASC. The accreditation process is extensive, and Cleans Seas Seafoods Ltd achieved certification from the ASC for their conformance to the ASC Seriola 2016 Standard in 2019, with annual reviews to ensure continuance of compliance (see www.asc-aqua.org/find-a-farm/ASC01211/). In 2021, Yumbah Aquaculture Ltd achieved ASC certification for their Kangaroo Island and Port Lincoln Abalone farms (www.asc-aqua.org/find-a-farm/ASC01633/) and www.asc-aqua.org/find-a-farm/ASC01634/).

Research

As part of its commitment to supporting industry growth and developing an adaptive resource management framework, PIRSA plays a key role in supporting a number of strategic research initiatives. Many of these projects are led and conducted by SARDI, the research division of PIRSA which offers an integrated research and development (R&D) capability to sustainably create, nurture and grow aquaculture industries.

SARDI and PIRSA work closely with the aquaculture sector to produce applied research outcomes and timely delivery. SARDI's aquaculture research program is uniquely set up to provide support across the whole spectrum of industry research needs, including:

- Developing novel cultivation technologies and culture of new species.
- Aquaculture site selection and suitability.
- Environmental assessment, monitoring, oceanography and carrying capacity modelling.
- Improving hatchery technology for improved success in spawning, larval and juvenile rearing of stock.
- Developing and evaluating improved, cost-effective and sustainable feeds.
- Providing advice and support on selective breeding programs and aligned molecular technologies.
- Optimisation of grow-out systems and husbandry practices in aquaculture farms.
- Enhancing algal production and systems to produce biomass for a diverse range of products and environmental services.
- Addressing disease and pest issues, through support with chemical registration, monitoring and surveillance, evaluation of therapeutics and development of improved husbandry practices.
- Pre- and post-harvest product safety and quality, including developing novel products, value addition and packaging.
- Circular economy and sustainability.
- Extractive aquaculture and Integrated Multi-Trophic Aquaculture.
- Trade and market access.

The outcomes of such initiatives are integrated into decision making processes such as those associated with aquaculture zoning, disease control, managing interactions with protected wildlife species and environmental management. A large number

of aquaculture related research projects have been undertaken over the years, most of which can be found at: www.pir.sa.gov.au/research/research/specialties/aquatic_sciences and www.frdc.com.au/

A strategic research initiative is the Innovative Solutions for Aquaculture Planning and Management suite of projects (IS). Commenced in 2004, this program was a joint initiative between PIRSA and the FRDC to fund research to foster the continued sustainable development of the South Australian aquaculture industry. Stage One of IS involved a site or species focus. Projects included an environmental audit of marine aquaculture, spatial impacts and carrying capacity for finfish aquaculture, finfish parasites, seal interactions and the development of rapid environmental assessment and monitoring techniques. In addition, a communication and extension strategy was developed to disseminate project outcomes to industry. The particular focus of the second stage of the IS program was to facilitate further economic growth of the aquaculture industry and to provide information to improve the management of aquaculture resources. Projects completed under Stage Two (2009-2012) have included oceanic and biological modelling of Spencer Gulf, biosecurity, new technologies and new species and improving programs for environmental monitoring.

In 2016 a project investigating interactions of sharks with marine activities (e.g. aquaculture and fisheries) in southern Spencer Gulf was finalised. The project focused on the movement dynamics of two pelagic sharks, the White Shark (*Carcharadon carcharias*) and Bronze Whaler (*Carcharinhus brachyurus*), in South Australia. Specific aims were to: (1) determine if aquaculture activities correlated with patterns on fidelity and migration; and (2) assess and compare the use of natural foraging areas and areas used during human marine activities. Additional objectives included the development of industry guidelines for removal and release of pelagic sharks from finfish aquaculture pontoons, and surveys to collect baseline information on perceptions of shark associations with aquaculture and other marine activities. A key outcome for this project was the negligible overlap between sharks and aquaculture activities in Spencer Gulf, suggesting that aquaculture does not lead to aggregations of sharks to an area. The final report for this project can be downloaded at www.frdc.com.au/project/2014-020. It is noteworthy independent research undertaken by Flinders University of South Australia on shark interactions around the tourism aquaculture site at Victor Harbor demonstrated a similar outcome (Huveneers et al. 2022).

The Future Oysters CRC-P program was developed in conjunction with the oyster industry, FRDC, and the Commonwealth Government to undertake the research needed to rebuild and evolve the Australian Oyster aquaculture industry in the face of POMS and other diseases affecting oysters. The research focused on breeding disease resistant Oysters, improve disease management, increase productivity and profitability, and to diversify risks to allow the industry to grow and supply domestic markets and a growing global consumer demand for seafood. Improved diagnostic technologies for POMS are being developed, including more efficient approaches to area surveillance, a test using flow cytometry for better quantification of the POMS virus in water, and a better understanding of sampling to test for POMS. This program also investigated the causes and approaches to managing Winter Mortality in Sydney Rock Oysters and mortalities of unknown cause in the South Australian Pacific Oyster industry. More on this project can be found at www.frdc.com.au or www.oystersaustralia.org/current-crep

A current project underway is aiming to identify the feeding requirements of Pacific Oysters, Cockles and Mussels, investigate the factors influencing food availability in South Australian Oyster farming regions and improve our understanding of the relationship between food availability, bivalve feeding and farm production/productivity, and the potential implication of aquaculture development on different species. This project is expected to be finalised in December 2022. More information on this project can be found at www.frdc.com.au/project/2014-027.

During 2015-19, as part of the Rural Research and Development for Profit Program (Department of Agriculture and Water Resources, Australian Government), SARDI was a research partner in a project "Growing a profitable, innovative and collaborative Australian YTK aquaculture industry: bringing 'white' fish to the market". The project focused on growing the key existing Australian YTK industry participants, as well as the industry as a whole, and directly addressed FRDC's strategic plan to build Australian sustainable aquaculture development through the activities of the new 'New and Emerging Aquaculture Opportunities' (NEAO) Subprogram. The project built on earlier R&D on YTK undertaken through the FRDC and the Australian Seafood Cooperative Research Centre (ASCRC) to deliver outcomes specifically for the industry partners of this project, and also provide benefits to the broader finfish aquaculture industry, particularly the sectors targeting the production of 'white' fish (e.g. Barramundi and Cobia). The final report can be found at www.frdc.com.au/sites/default/files/products/2016-200-DLD.pdf

During 2019-22, an FRDC project assessing the capacity for sustainable Finfish aquaculture in the vicinity of seagrasses is being undertaken. The project was prompted by the re-establishment of Yellowtail Kingfish aquaculture in Fitzgerald Bay. The outcomes of the project will 1. determine cost-effective approaches to assessing the influence of Finfish aquaculture derived nutrients on seagrasses, and using Fitzgerald Bay as a case study what that influence is, 2. Develop a predictive modelling ability to estimate carrying capacity and allow scenario analysis of future aquaculture developments and how it might affect seagrasses. The model will also allow managers to make informed decisions about where to place future developments, and how much to allow existing developments to expand, 3. Use Fitzgerald Bay as a case study to document seagrass condition using a range of metrics both before the commencement of Finfish aquaculture, and once production has reached a substantial level and 4. Develop a range of cost-effective indicators for monitoring the effects of aquaculture on adjacent seagrass beds. More on this project can be found at www.frdc.com.au/project/2018-186.

In 2019, PIRSA's Aquatic Animal Health Unit completed a project to improve early detection surveillance and emergency disease response to POMS using a hydrodynamic model to predict the dispersion of OsHV-1. This project provided a case study for how such a model can predict pathogen spread to underpin improved surveillance designs, effective emergency disease response (identified disease management areas around the State) and appropriate biosecurity zoning for translocation protocols. More on this project can be found at www.frdc.com.au/project/2018-090.

In June 2020, PIRSA's Aquatic Animal Health Unit completed another project which developed national guidelines to provide the Australian sea-cage finfish (non-salmonid) industry with the tools and templates to create an auditable farm biosecurity plan. Consideration was given to the current farming of Yellowtail Kingfish (*Seriola lalandi*), Southern Bluefin Tuna (*Thunnus maccoyii*) and Cobia (*Rachycentron canadum*). More on this project can be found at www.frdc.com.au/project/2019-088.

In February 2020, a pilot research trial for red seaweed (*Asparagopsis*) aquaculture led by SARDI was awarded funding from the FRDC. This project is expected to be finalised in January 2023. Details on this project can be found at www.frdc.com.au/project/2019-144.

In 2021, PIRSA's Aquatic Animal Health Unit commenced project FRDC 2020-094 "Improving the availability of safe and effective veterinary medicines for Australia's seafood industry". This project aims to document a safe and effective process for off-label use of veterinary medicines, facilitate progress of priority veterinary chemical products in aquaculture, determine options for a framework and/ or business case for future coordination and develop and implement a communication and awareness strategy for safe and effective veterinary medicine use. More information on the project can be found at www.frdc.com.au/project/2020-094.

In 2021, SARDI commenced a project funded under the Economic and Business Growth Fund (EBGF) to help better engage with the private sector to attract new companies into the local aquaculture industry and grow commercial seaweed opportunities through scientific support. The project aims to foster the engagement between commercial industry companies, technical experts and researchers in order to enhance the understanding of seaweed as a raw material along with identifying and resolving constraints that currently exist to large scale seaweed production. SARDI has partnered with five local industry groups to commercialise seaweeds for applications such as food, functional food, nutraceuticals, cosmeceuticals, feed and fertilisers.

Additionally, the Federal Government (2021) has invested \$59M into the <u>Marine Bioproducts Cooperative Research Centre</u> (MB CRC), which will help establish South Australia as an international leader in commercial seaweed. The State Government is also investing \$2.6M over the next 10 years into the MB CRC, including contributions from PIRSA (\$2M) and the Department for Industry, Innovation and Services (providing \$600,000 to SARDI).

In early 2022, PIRSA's Aquatic Animal Health Unit completed FRDC project 2019-147 which investigated risk factors and management strategies associated with summer mortality in Australian abalone. The project summarised current abalone health and summer mortality research and retrospective mortality investigations and laboratory submissions of Australian abalone. The project also developed a case definition for summer mortality and investigated summer mortality events during the life of the project to rule out primary pathogens and infectious agents, in both control and affected abalone populations. More on this project can be found at www.frdc.com.au/project/2019-147.

External factors or events affecting the aquaculture industry in South Australia

Coronavirus (COVID-19)

In March 2020, the Coronavirus (COVID-19) was declared a global pandemic which resulted in the closure of restaurants and food outlets, and a reduction or loss in access to domestic and export markets for South Australian seafood industries. For example, the Mussel and Oyster industries were significantly impacted from the restrictions of access to export markets and dampening of domestic food service consumption. To assist the recovery of the South Australian aquaculture industry from the significant impacts of COVID-19, the collection of 2020-21 aquaculture sector fees were deferred for six months and any outstanding 2019-20 fees were also deferred. The next round of fees were not collected until January 2021.

The demand for South Australian oysters in Australia has now soared since growers were forced to innovate and diversify during the COVID-19 pandemic. Growers shifted from international exports to local retail and tourism opportunities, including online and pop-up shops, and oyster experiences on floating pontoons. Growers have experienced record sales for the past few quarters which has been attributed to more people spending money on local experiences, produce and tourism, and good spat survivability. Restaurant orders have almost returned to pre COVID-19 levels and with a highly successful local market, the oyster industry is flourishing again.

Tuna quota

Southern Bluefin Tuna (SBT) are a highly migratory species found in several parts of the Southern Ocean, including the Great Australian Bight in South Australia and Western Australia. SBT migratory patterns mean international agreements are required to ensure sustainable global management of this species throughout its full range of distribution. The Commission for the Conservation of Southern Bluefin Tuna (CCSBT) manages SBT stock levels under an international agreement. Following recommendations from an independent scientific committee, the CCSBT set the Australian Total Allowable Catch (TAC) allocation at 6 165 t per annum for 2018 to 2020, an increase from 5 665 t in 2017.

In October 2020, the CCSBT increased Australia's TAC to 6 238 t per annum for the 2021-2023 period. In setting the quota, the CCSBT is using data from two new genetic techniques to estimate the spawning stock (close-kin DNA matching) and recruitment to the fishery (gene tagging).

The Commonwealth Government has responsibility for all catch of SBT and is leading the development of a national approach to resource sharing. The approach is aimed at ensuring all catch is covered by Australia's allocation from CCSBT and will involve state and federal government collaboration. To achieve this the Commonwealth Government legislated in 2020 that 5% of Australia's TAC will be allocated to manage recreational catch for the long term.

Mussel industry

Eyre Peninsula (EP) Seafoods produces about 45 per cent of Australia's Mussel product and was formed in July 2016 from an amalgamation of businesses Kinkawooka Shellfish and SA Seafoods, the state's two main Mussel producers. In November

2017, the Port Lincoln based mussel company was awarded a \$500,000 State Government grant to help build a wet store holding facility. It is a first in Australian technology allowing higher production value and supply throughout the year. The new technology means that EP Seafoods can pursue markets in the United States and Canada along with keeping up with demand, as the new facility meant broken or damaged stock would no longer go to waste. Produce could be stored on site with the ability to hold up to 40 t of product fresh and alive for weeks if needed, meaning no wastage and ensuring there was still product to harvest despite inclement weather.

Oysters

POMS and spat supply

POMS is a disease which affects Pacific Oysters and has not been detected in South Australian Oyster growing regions to date. POMS causes rapid and high mortalities in farmed oysters (up to 100% within days of being detected) and can spread quickly if introduced. There are no human health implications associated with POMS. South Australia produces some of the finest Pacific Oysters on the market and table Oysters purchased from retailers, restaurants and fish processors are safe to eat. For more information about POMS see:www://pir.sa.gov.au/aquaculture/aquatic_animal_health/pacific_oyster_mortality_syndrome.

In February 2016, POMS was detected in Tasmania causing a significant economic impact to that state and South Australia. Previously, South Australia received 80% of spat (juvenile Oysters) from health certified hatcheries in Tasmania, however a South Australia ban now exists for live Oysters, including spat, from Tasmania to prevent the risk of POMS entering South Australia.

PIRSA's response to the detection of POMS in Tasmania included substantial resources and financial assistance for the rapid expansion and establishment of a secure Oyster spat supply in South Australia. This included PIRSA providing emergency financial assistance (\$320,000) for equipment and infrastructure upgrades to two small SA Oyster hatcheries on the Eyre Peninsula (EP Shellfish and Sustainable Aquatic Industries). In addition, SARDI was commissioned by PIRSA (\$150,000) to produce spat for industry, condition Oyster brood-stock and produce micro-algae, as an emergency measure for South Australian hatcheries. PIRSA also fast tracked the assessment and granting of two new landbased oyster hatcheries, Eyre Shellfish Pty Ltd (Cowell) and Cameron of Tasmania Pty Ltd (Port Lincoln), to provide more spat to the South Australian oyster industry. These contribute significantly to PIRSA's financial assistance to industry by providing additional spat to the South Australian industry.

Continuation of support for recovery of the Oyster sector was estimated to be over \$1.3M in 2018-19. This continued into 2019-20, with further resources estimated to be over \$1M provided, including the waiving of annual fees (\$0.53M) and application fees for farmers (\$0.16M), assistance in the supply of spat, financial support to the POMS resistant breeding program, Statewide POMS early detection surveillance, hatchery biosecurity, feral Oyster destruction in the Port Adelaide River and Outer Harbor, and an Oyster Industry Liaison Officer and Aquatic Animal Health Officer, both based within PIRSA. As an example, the PIRSA Regional Development Fund provided Eyre Shellfish Pty Ltd \$267,500 to assist with biosecurity enhancements to the hatchery, nursery and dam construction, and \$250,000 to Yumbah Hatchery to assist with expanding their facility.

It has taken a few years but South Australian Oyster growers are now able to source spat locally within the State. The enhanced South Australian spat production capacity not only safeguards the supply of spat for the South Australian oyster industry but facilitates South Australia becoming the Oyster capital of Australia.

Availability of suitable sized spat – to date South Australian hatcheries have been able to provide up to 3 mm spat which have been difficult to successfully transition to the marine grow-out sites at such a small size. Industry and the hatcheries have been meeting this challenge by working towards on-growing the small spat to a larger size (4-6 mm) to facilitate successful production to market-size Oysters.

Vibrio parahaemolyticus

In November 2021, the production areas of Coffin Bay were temporarily closed by PIRSA as a precautionary measure as part of an ongoing investigation into the rise in Vibrio parahaemolyticus (Vibrio) cases from the consumption raw Oysters. Vibrio is a bacterium found in marine, coastal and tidal waters that can cause gastroenteritis (gastro) after improper handling or consumption of raw or inadequately cooked shellfish and fish. Environmental factors such as a change in temperature and/or salinity are thought to contribute to Vibrio outbreaks. PIRSA initiated a Vibrio Working Group to implement control measures, best practice guides and initiate research to minimise the potential risks to the industry. The members of this group included South Australian Oyster Growers Association (SAOGA), PIRSA, SA Health, SafeFish and Oysters Tasmania. For more

information on Vibrio, see link: For more information, see link: www.pir.sa.gov.au/alerts news events/news/ministerial releases/coffin bay oyster harvesting area closed

Contacts

Department of Primary Industries and Regions Fisheries and Aquaculture Phone: (08) 8207 5333

Email: pirsa.aquaculture@sa.gov.au

Australian Abalone Growers Association

Email: eo@aagai.com.au

Australian Southern Bluefin Tuna Industry Association

Email: CEO@asbtia.org
Email: info@asbtia.org

South Australian Oyster Growers Association

Phone: 8364 3831

Email: saoga.saorc@bigpond.com

South Australian Mussel Growers Association

Phone: 8682 3065

Email: mussels@kinkawookamussels.com.au

South Australian Aquaculture Council (SAAC)

Email: info@asbtia.com.au

Australian Sustainable Seaweed Alliance Email: info@seaweedalliance.org.au

Cleanseas Seafood Limited

Phone: 8621 2900

Email: rob.gratton@cleanseas.com.au

References

ABARES (2021). Australian Fisheries and Aquaculture Statistics 2020, August 2021. www.daff.ent.sirsidynix.net.au/client/en_AU/search/asset/1032481/0

BDO EconSearch (2022). The Economic Contribution of Aquaculture in the South Australian State and Regional Economies, 2019/20. A report prepared for PIRSA Fisheries and Aquaculture.

www.pir.sa.gov.au/ data/assets/pdf_file/0020/425027/economic_impact_report_2020-21.pdf

FAO (2018a). The state of World Fisheries and Aquaculture 2018 – Meeting the sustainable developmental goals. Food and Agriculture Organization of the United Nations, Rome 2018.

FAO (2018b). Statistics—introduction, Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome 2018.

FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en.

Fernandes, M., Lauer, P., Cheshire, A., and Angove, M. (2007a). Preliminary model of nitrogen loads from southern bluefin tuna aquaculture. *Marine Pollution Bulletin* 54 (2007): 1321-1332.

Fernandes, M., Lauer, P., Cheshire, A., Svane, I., Putro, S., Mount, G., Angove, M., Sedawie, T., Tanner, J., Fairweather, P., Barnett, J., and Doonan, A. (2007b). Aquafin CRC – Southern Bluefin Tuna Aquaculture Subprogram: Tuna Environment Subproject – Evaluation of Waste Composition and Waste Mitigation. Technical report, Aquafin CRC Project 4.3.2, FRDC Project 2001/103. SARDI Publication No. RD03/0037-9. SARDI Research Report Series No. 207 (Ed. M. Fernandes). Aquafin CRC, Fisheries Research & Development Corporation and South Australian Research & Development Institute (Aquatic Sciences), Adelaide. 289 pp.

Fletcher, W., Chesson, J., Fisher, M., Sainsbury, K. and Hundloe, T. (2004). National ESD Reporting Framework: The "How To" Guide for Aquaculture. Version 1.1 FRDC, Canberra, Australia 88 pp.

Huveneers, C., Niella, Y., Drew, M., Dennis, J., Clarke, T. M., Wright, A., Bryars, S., Braccini, M., Dowling, C., Newman, S. J., Butcher, P., and Dalton, S. (2022). Are sharks attracted to caged fish and associated infrastructure? *Marine and Freshwater Research*. https://doi.org/10.1071/MF22039

Roberts, S.D., Van Ruth, P.D., Wilkinson, C., Bastianello, S.B., Bansemer, M.S. (2019) Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Frontiers in Marine Science - Impact of Ocean Warming and Acidification on Marine Fish Health Special Edition. Front. Mar. Sci. 6:610. doi: 10.3389/fmars.2019.00610

Roberts, S., James, C., Bansemer, M., Colberg, F., Aijaz, S., Jakaitis, K., Schulz E., Middleton J. (2020). Improving early detection surveillance and emergency disease response to Ostreid herpesvirus using a hydrodynamic dispersion model: updating disease management areas for the South Australian oyster industry. FRDC Project No 2018-090. PIRSA, Adelaide, 86pp

Tanner, J.E. Clark, T.D., Fernandes, M. and Fitzgibbon, Q. (2007). Innovative Solutions for Aquaculture: Spatial Impacts and Carrying Capacity – Further Developing, Refining and Validating Existing Models of Environmental Effects of Finfish Framing. South Australian Research and Development Institute (Aquatic Sciences, Adelaide, 126 pp.

Tanner, J.E. and Bryars, S. (2007). Innovative Solutions for Aquaculture Planning and Management – Project 5, Environmental Audit of Marine aquaculture Developments in South Australia. FRDC Project 2003/223. Fisheries Research and Development Corporation and South Australian Research and Development Institute (Aquatic Sciences, Adelaide, SARDI Research Report No.190.

Tanner, J.E. and Volkman, J. (2009). Aquafin CRC – Southern Bluefin Tuna Aquaculture Subprogram: Risk and Response – Understanding the Tuna Farming Environment. Technical Report, Aquafin CRC Project 4.6, FRDC Project 2005/059. Aquafin CRC, Fisheries Research and Development Corporation and South Australian Research and Development Institute (Aquatic Sciences, Adelaide, SARDI Research Report Series No.344, 287 pp.

Glossary

AMR Antimicrobial Resistance Strategy

ASCRC Australian Seafood Cooperative Research Centre

APVMA Australian Pesticides and Veterinary Medicines Authority

ASBTIA Australian Southern Bluefin Tuna Industry Association

ATAB Aquaculture Tenure Allocation Board

AVG Abalone Viral Ganglioneuritis

BST Baker-Schultz-Turner

CCSBT Commission for the Conservation of Southern Bluefin Tuna

DEW Department for Environment and Water

EBGF Economic and Business Growth Fund

EMP Environmental Monitoring Program

EPA Environment Protection Authority

EPPs Environment Protection Policies

ESD Ecologically Sustainable Development

FAO Food and Agriculture Organisation

FCR Food Conversion Ratio

FRDC Fisheries Research and Development Corporation

FTE Full Time Equivalent

GSSI Global Sustainable Seafood Initiative

HABs Harmful Algal Blooms

IMTA Integrated Multitrophic Aquaculture

MMA Macroalgae Management Areas

OsHV-1 Oyster Herpesvirus-1 microvariant

OIE World Organisation for Animal Health

PIRSA Primary Industries and Regions South Australia

POMS Pacific Oyster Mortality Syndrome

SAOGA South Australian Oyster Growers Association

SAORC South Australian Oyster Research Council

SARDI South Australian Research and Development Institute Aquatic Sciences

SASQAP South Australia Shellfish Quality Assurance Program

SBT Southern Bluefin Tuna

TEPS Threatened, Endangered and Protected Species

UV Ultra-violet

YTK Yellowtail Kingfish

Appendix 1 Aquaculture licences held in South Australia in 2020-21 by sector

Tuna sector (+ 6 maintenance sites)										
Reporting year	Number of licences	Licence nu	ımbers							
2020-21	8	AQ00030	AQ00053	AQ00060	FB00078	AQ00114	AQ00118	AQ00271		
		AQ00047	AQ00057	AQ00169	FB00079	AQ00116	AQ00120	FH00001		

Finfish sector								
Reporting Number of Licence numbers year licences								
2020-21	18	AQ00015	AQ00018	AQ00214	AQ00255	AQ00396	FF00085	
		AQ00016	AQ00139	AQ00234	AQ00292	AQ00367	FF00090	
		AQ00017	AQ00140	AQ00235	AQ00302	FF00037	FH00003	

Marine abalone sector								
Reporting year	Number of licences	Licence numbers						
2020-21	5	AQ00290	AQ00327	AQ00467	FA00008	FA00016		

Marine algae sector									
Reporting year	Number of licences	Licence nu	mbers						
2020-21	2	AQ00463	AQ00464						

Mussel sector										
Reporting year	Number of licences	Licence nu	umbers							
2020-21	32	AQ00067	AQ00190	FS00011	FS00016	FS00023	FS00072	FS00097		
		AQ00101	AQ00192	FS00012	FS00019	FS00029	FS00073	FS00102		
		AQ00108	AQ00193	FS00013	FS00020	FS00038	FS00082			
		AQ00109	AQ00209	FS00014	FS00021	FS00042	FS00084			
		AQ00141	AQ00215	FS00015	FS00022	FS00071	FS00095			

Landbased	Landbased sector (includes landbased, abalone, finfish and oyster hatcheries)									
Reporting year	Landbased category	Number of licences	Licence r	numbers						
2020-21	Category A	21	AQ00132 AQ00211 AQ00248 AQ00260	AQ00305 AQ00462 FT00014 FT00133	FT00166 FT00253 FT00323 FT00372	FT00487 FT00493 FT00502 FT00505	FT00523 FT00545 FT00685 FT00701	FT00738		
2020-21	Category B	24	AQ00246 AQ00270 AQ00280 AQ00361	AQ00364 AQ00408 AQ00429 FT00007	FT00013 FT00069 FT00123 FT00185	FT00365 FT00402 FT00459 FT00464	FT00478 FT00604 FT00607 FT00611	FT00633 FT00687 FT00735 FT00745		
2020-21	Category C	10	AQ00131 AQ00353 AQ00409 FT00036	FT00040 FT00135 FT00158 FT00385	FT00676 FT00736					
2020-21	Category D	6	FT00423 FT00558 FT00560 FT00620	FT00634 FT00702						

Tourism see	ctor	
Reporting year	Number of licences	Licence numbers
2020-21	1	AQ00315

Oyster sector										
Reporting Year	Number of licences	Licence num	nbers							
2020-21	350	AQ00001	AQ00180	AQ00393	FM00018	FM00212	FM00405	FM00498		
		AQ00002	AQ00183	AQ00399	FM00019	FM00217	FM00406	FM00500		
		AQ00005	AQ00186	AQ00400	FM00023	FM00221	FM00407	FM00504		
		AQ00009	AQ00188	AQ00401	FM00024	FM00307	FM00410	FM00510		
		AQ00012	AQ00197	AQ00402	FM00025	FM00309	FM00416	FM00514		
		AQ00034	AQ00198	AQ00403	FM00027	FM00315	FM00417	FM00515		
		AQ00035	AQ00199	AQ00405	FM00028	FM00316	FM00420	FM00517		
		AQ00036	AQ00220	AQ00410	FM00031	FM00324	FM00422	FM00518		
		AQ00039	AQ00221	AQ00411	FM00032	FM00325	FM00423	FM00519		
		AQ00041	AQ00222	AQ00412	FM00033	FM00326	FM00424	FM00520		
		AQ00042	AQ00223	AQ00413	FM00034	FM00328	FM00425	FM00521		
		AQ00043	AQ00227	AQ00416	FM00035	FM00329	FM00426	FM00524		
		AQ00068	AQ00228	AQ00417	FM00036	FM00330	FM00427	FM00525		

Oyster sector						
AQ00071	AQ00175	AQ00389	AQ00455	FM00144	FM00374	FM00461
AQ00071 AQ00091	AQ00175 AQ00176	AQ00389 AQ00390	AQ00455 AQ00456	FM00144	FM00374	FM00461 FM00462
AQ00091 AQ00094	AQ00170 AQ00177	AQ00390 AQ00391	AQ00450 AQ00457	FM00145	FM00375	FM00463
AQ00094 AQ00099	AQ00177 AQ00178	AQ00391 AQ00392	AQ00457 AQ00458	FM00149	FM00370	FM00464
AQ00099 AQ00100	AQ00178 AQ00243	AQ00392 AQ00418	AQ00458 AQ00459	FM00149	FM00377	FM00465
AQ00100 AQ00102	AQ00243 AQ00244	AQ00410 AQ00419	AQ00459 AQ00460	FM00153	FM00380	FM00466
AQ00102 AQ00103	AQ00244 AQ00256	AQ00419 AQ00420	AQ00460 AQ00468	FM00154	FM00380	FM00467
AQ00103 AQ00104	AQ00250 AQ00257	AQ00420 AQ00421	AQ00469	FM00155	FM00384	FM00467
AQ00104 AQ00105	AQ00257 AQ00263	AQ00421 AQ00422	AQ00409 AQ00476	FM00156	FM00385	FM00400
AQ00103 AQ00106	AQ00203 AQ00277	AQ00422 AQ00423	FH00002	FM00160	FM00387	FM00471
AQ00100 AQ00107	AQ00277 AQ00278	AQ00423 AQ00424	FM00015	FM00161	FM00389	FM00474
AQ00107 AQ00110	AQ00278 AQ00282	AQ00424 AQ00425	FM00013	FM00161	FM00309	FM00470
AQ00110 AQ00127	AQ00202 AQ00284	AQ00425 AQ00426	FM00038	FM00163	FM00391	FM00477
AQ00127 AQ00133	AQ00204 AQ00295	AQ00420 AQ00427	FM00039	FM00165	FM00393	FM00479
AQ00133 AQ00137	AQ00293 AQ00297	AQ00427 AQ00428	FM00040	FM00166	FM00400	FM00479
AQ00137 AQ00138	AQ00237 AQ00312	AQ00420 AQ00430	FM00044	FM00167	FM00401	FM00482
AQ00145	AQ00312 AQ00313	AQ00430 AQ00431	FM00044	FM00170	FM00402	FM00484
AQ00145 AQ00146	AQ00313 AQ00317	AQ00431 AQ00432	FM00047	FM00170	FM00403	FM00485
AQ00147	AQ00317 AQ00322	AQ00432 AQ00433	FM00059	FM00171	FM00404	FM00531
AQ00148	AQ00323	AQ00435	FM00060	FM00177	FM00428	FM00532
AQ00149	AQ00324	AQ00436	FM00062	FM00178	FM00432	FM00538
AQ00150	AQ00327	AQ00437	FM00064	FM00181	FM00434	FM00539
AQ00152	AQ00329	AQ00438	FM00065	FM00331	FM00436	FM00542
AQ00153	AQ00335	AQ00439	FM00068	FM00332	FM00437	FM00543
AQ00156	AQ00350	AQ00440	FM00069	FM00335	FM00439	FM00544
AQ00157	AQ00351	AQ00441	FM00072	FM00336	FM00440	FM00546
AQ00158	AQ00366	AQ00442	FM00075	FM00347	FM00441	FM00547
AQ00159	AQ00367	AQ00443	FM00076	FM00348	FM00450	FM00550
AQ00160	AQ00368	AQ00444	FM00082	FM00349	FM00451	FM00552
AQ00161	AQ00369	AQ00445	FM00088	FM00351	FM00452	FM00553
AQ00162	AQ00378	AQ00446	FM00094	FM00352	FM00453	FM00554
AQ00163	AQ00380	AQ00447	FM00095	FM00353	FM00454	FM00555
AQ00164	AQ00381	AQ00448	FM00099	FM00355	FM00455	FM00556
AQ00167	AQ00383	AQ00449	FM00101	FM00358	FM00456	FS00079
AQ00168	AQ00386	AQ00450	FM00117	FM00359	FM00457	FS00080
AQ00172	AQ00387	AQ00451	FM00139	FM00366	FM00458	FS00085
AQ00173	AQ00388	AQ00452	FM00140	FM00373	FM00459	

Appendix 2 Aquaculture zone policies in South Australia

Policy	Zone	Sector	Total area (ha)	Leasable (ha)	Species
Aquaculture	Cape D'Estrees (inner) subtidal	NA	145	60	Molluscs (other than filter
(Zones – Cape	aquaculture zone				feeding molluscs) & algae
D'Estrees)	Cape D'Estrees (middle) subtidal	NA	198	60	Molluscs (other than filter
Policy 2006	aquaculture zone				feeding molluscs) & algae
	Cape D'Estrees (outer) subtidal	NA	392	60	Molluscs (other than filter
	aquaculture zone				feeding molluscs) & algae
	Laura Bay aquaculture exclusion	NA	534	Nil	NA
	zone				
Aquaculture	Eyre Island intertidal aquaculture	NA	81	21	Bivalve Molluscs (other than
(Zones – Smoky	zone				mussels) & research
Bay) Policy 2007	Missiessey intertidal aquaculture	NA	108	24	Bivalve Molluscs (other than
	zone				mussels) & research
	Saddle Peak intertidal aquaculture	NA	62	21	Bivalve Molluscs (other than
	zone	A14	474	N. C. I. C. I.	mussels) & research
	Smoky Bay aquaculture emergency	NA	171	Not defined	Bivalve Molluscs (other than
	zone	A I A		0.05	mussels)
	Smoky Bay (holding) intertidal	NA	4	0.35	Holding Bivalve Molluscs (other
	aquaculture zone Smoky Bay intertidal aquaculture	NA	73	20.9	than mussels)
	zone	INA	73	20.9	Bivalve Molluscs (other than mussels) & research
	Smoky Bay north subtidal	NA	2 166	40	Bivalve Molluscs (other than
	aquaculture zone	INA	2 100	1 40	mussels)
	Smoky Bay south subtidal	NA	1 621	40	Bivalve Molluscs (other than
	aquaculture zone				mussels)
	Vinya intertidal aquaculture zone	NA	180	62	Bivalve Molluscs (other than
					mussels) & research
	Eyre Island aquaculture exclusion zone	NA	9 784	Nil	NA
Aquaculture (Zones – Streaky	Blanche Port aquaculture zone	NA	2 799	77.5	Bivalve molluscs (other than mussels)
Bay) Policy 2011	Haslam (north bank) aquaculture zone	NA	342	50	Bivalve molluscs (other than mussels)
	Perlubie (south bank) aquaculture	NA	224	40	Bivalve molluscs (other than
	zone Point Gibson aquaculture zone	NA	265	70	mussels) Bivalve molluscs (other than
	Otrack Decree 1	NIA.	45.004	40	mussels)
	Streaky Bay aquaculture zone	NA	45 334	40	Bivalve molluscs (other than mussels) & Abalone
	Streaky Bay aquaculture exclusion zone	NA	3 748	Nil	NA
Aquaculture (Zones – Anxious	Anxious Bay aquaculture zone	NA	452	120	Molluscs (other than mussels or oysters) & algae
Bay) Policy 2007	Anxious Bay aquaculture exclusion zone	NA	8 634	Nil	NA NA

Policy	Zone	Sector	Total area (ha)	Leasable (ha)	Species
Aquaculture (Zones – Coffin Bay) Policy 2008	Frenchman Bluff aquaculture zone	NA	388	90	Supplementary fed organisms (other than finfish) that involves regular feeding, algae & research
	Kellidie Bay aquaculture zone	NA	732	23	Bivalve molluscs (other than mussels), storage & research
	Mount Dutton Bay aquaculture zone	NA	601	32	Bivalve molluscs (other than mussels) & research
	Point Longnose aquaculture zone	NA	379	63	Bivalve molluscs (other than mussels), algae & research
	Port Douglas (central) aquaculture zone	NA	446	50	Bivalve molluscs (other than mussels) & research
	Port Douglas (east) aquaculture zone	NA	34	4	Bivalve molluscs (other than mussels) & research
	Port Douglas (west) aquaculture zone	NA	90	10	Bivalve molluscs (other than mussels) & research
	Coffin Bay aquaculture exclusion zone	NA	15 686	Nil	NA
Aquaculture (Zones - Lower	Boston Bay aquaculture zone	Bicker Isles sector	243	368	Supplementary fed species (i.e. wild-caught tuna, finfish,
Eyre Peninsula) Policy 2013		Boston Island (east) sector	855		abalone etc.), bivalve molluscs & algae
		Boston Bay sector	2 702		
	Lincoln aquaculture zone	Lincoln (inner) sector	18 447	1825	Prescribed wild-caught tuna & algae
		Lincoln (outer) sector	35 024	5000	
	Louth Bay aquaculture zone	NA	9 443	270	Supplementary fed organisms (other than wild-caught tuna), bivalve molluscs & algae
	Murray Point aquaculture zone	NA	72	2	Bivalve molluscs (other than mussels)
	Proper Bay aquaculture zone	NA	2 356	60	Bivalve molluscs & algae
	Tod River aquaculture zone	NA	747	38	Bivalve molluscs (other than mussels)
	Lincoln aquaculture exclusion zone	NA	27 383	Nil	NA
	Sir Joseph Banks aquaculture exclusion zone	NA	96 723	Nil	NA
	Buffalo Reef aquaculture exclusion zone	NA	1 255	Nil	NA
Aquaculture (Zones - Tumby Bay) Policy 2015	Tumby Bay aquaculture zone	NA	10 324	1300	Supplementary fed organisms (other than wild-caught tuna), bivalve molluscs (i.e. mussels), algae & research
	Tumby Bay aquaculture exclusion zone	NA	13 765	Nil	NA

Policy	Zone	Sector	Total area (ha)	Leasable (ha)	Species
Aquaculture (Zones - Port Neill) Policy 2008	Port Neill aquaculture zone	NA	4 913	565	Prescribed wild-caught tuna broodstock, supplementary fed organisms (other than wild- caught tuna), bivalve molluscs, research & algae
	Port Neill aquaculture exclusion zone	NA	7 227	Nil	NA
Aquaculture (Zones - Arno Bay) Policy 2011	Arno Bay aquaculture zone	Arno Bay (outer) sector	2 209	80	Prescribed wild-caught tuna broodstock & supplementary fed organisms (other than wild-caught tuna)
		Arno Bay (inner) sector	3 494	200	Supplementary fed organisms (other than wild-caught tuna)
Aquaculture (Zones – Fitzgerald Bay)	Fitzgerald Bay aquaculture zone	Eastern Fitzgerald sector	2 849	550	Supplementary fed organisms (other than wild-caught tuna), bivalve molluscs & algae
Policy 2008		Western Fitzgerald sector	1 705		
	Fitzgerald Bay (north) aquaculture zone	NA	10	10	Bivalve molluscs & algae
	Fitzgerald Bay aquaculture exclusion zone	NA	2 148	Nil	NA
Aquaculture (Zones –	Hardwicke Bay (inner) subtidal aquaculture zone	NA	420	60	Molluscs & algae
Eastern Spencer Gulf)	Hardwicke Bay (middle) subtidal aquaculture zone	NA	1 053	60	Molluscs & algae
Amendment Policy 2017	Hardwicke Bay (outer) subtidal aquaculture zone	NA	1 402	60	Molluscs & algae
	Port Broughton intertidal aquaculture zone	NA	356	65	Bivalve molluscs & algae
	Tickera intertidal aquaculture zone	NA	512	45	Bivalve molluscs & algae
	Tickera subtidal aquaculture zone	NA	2 398	60	Bivalve molluscs & algae
	Wallaroo (East) aquaculture zone	NA	1 394	350	Supplementary fed organisms (other than tuna) that involves regular feeding, algae, filter feeding bivalve molluscs & algae
	Wallaroo (West) aquaculture zone	NA	500	50	Bivalve molluscs & algae
	Point Pearce (East) intertidal aquaculture zone	NA	135	20	Bivalve molluscs & algae
	Point Pearce (West) intertidal aquaculture zone	NA	365	40	Supplementary fed organisms (other than finfish & abalone) that involves regular feeding, filter feeding bivalve molluscs & algae

Policy	Zone	Sector	Total area (ha)	Leasable (ha)	Species
	Point Riley aquaculture exclusion zone	NA	9 639	Nil	NA
	Port Broughton aquaculture exclusion zone	NA	4 384	Nil	NA
	Port Hughes aquaculture exclusion zone	NA	3 407	Nil	NA
	Wallaroo aquaculture exclusion zone	NA	10 889	Nil	NA
Aquaculture (Zones – Lacepede Bay) Policy 2012	Cape Jaffa aquaculture zone	NA	1 316	40	Supplementary fed organisms (other than wild-caught tuna & abalone)
	Kingston aquaculture zone	Kingston (holding) sector	416	5	Supplementary fed organisms (other than wild-caught tuna & abalone)
		Kingston (inner) sector	25 560	80	Supplementary fed organisms (other than wild-caught tuna & abalone)
		Kingston (outer) sector	14 899	200	Supplementary fed organisms (other than wild-caught tuna & abalone)
	Kingston aquaculture exclusion zone	NA	4 712	Nil	NA

Department of Primary Industries and Regions