

Addendum to the 2014 ESD risk assessment of the South Australian Spencer Gulf Prawn Fishery

December 2022

Addendum to the 2014 ESD risk assessment of the South Australian Spencer Gulf Prawn Fishery

Information current as of December 2022

© Government of South Australia 2022

Disclaimer

Department of Primary Industries and Regions and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability and currency or otherwise. Department of Primary Industries and Regions and its employees expressly disclaim all liability or responsibility to any person using the information or advice.

All Enquiries

Department of Primary Industries and Regions Annabel Jones GPO Box 1625 ADELAIDE SA 5001 www.pir.sa.gov.au/fisheries Tel: (08) 8226 0900

Contents

Background	4
Method	4
National ESD Reporting Framework for Fisheries	5
Productivity Susceptibility Analysis (PSA)	5
Consequence Spatial Analysis (CSA) of habitat	6
Research sub-committee consultation on ESD risk assessment	6
Risk Ratings	8
Results	9
Performance reports1	7
PSA Analysis1	7
References20	C
Appendices22	2

Background

Section 43 (2) of the Fisheries Management Act 2007 requires that a management plan for a fishery:

- 1. identify the impacts or potential impacts of the fishery on its associated ecosystem or ecosystems, including impacts on non-target species of fish or other aquatic resources; and
- 2. identify any ecological factors that could have an impact on the performance of the fishery.

Following the identification of the ecological impacts and ecological factors Section 43 (2) of the Act also requires that for the most serious risks strategies for addressing these risks be developed.

The '2014 ESD risk assessment of the South Australian Spencer Gulf Prawn Fishery' provided a comprehensive analysis of the impacts and potential impacts of the fishing activity, as well as identifying ecological factors that could impact on the performance of the fishery. This document updates the work undertaken in the 2014 ESD risk assessment.

Method

The ecological risk assessment of the effects of fishing (ERAEF) framework process, developed by Hobday et al (2011) undertaken in 2014, has been updated in this document. The ERAEF has two components a Productivity Susceptibility Analysis (PSA) of species and a Consequence Spatial Analysis (CSA) of habitat. The 2014 ESD risk assessment only undertook the PSA. The CSA methodology has been developed to address PI 2.4.1 of the Marine Stewardship Council (MSC) certification. The CSA is the 'PSA Habitat' component of the ERAEF.

The 2014 PSA was updated (from a previous assessment of 195 species caught on a bycatch survey in 2007) to assess an additional 18 species. These included 16 species identified on a 2013 bycatch survey (including 1 EPBC Act-listed species), and another 1 listed species and 1 cetacean species of conservation interest reported to have been involved in an interaction with the SGPF based on logbook data. Based on the PSA of the additional 17 species, 1 was assessed as high risk, 12 as moderate risk and 4 as low risk.

The CSA used the spatial analysis of trawl footprint of the SGPF, combined with habitat and sediment maps were used to identify the main habitat that the fishery commonly encounters. The main habitat was identified as 'Fine-Flat-Small encrusting' habitat which is characterised as being a flat surface structure of fine sand/mud sediment, with biota predominantly comprising of mixed small/low-encrusting invertebrate communities. Based on scores of consequence and spatial attributes against predetermined criteria, this Fine-Flat-Small encrusting habitat was assessed as medium risk.

The second component of the ESD risk assessment is the '*National ESD Reporting Framework for Fisheries*' developed by Fletcher et al. (2002). The initial steps of this analysis involved identifying the issues relevant to the fishery and then prioritising these issues (Fletcher et al. 2005). The Fletcher model has traditionally included target and non-target species. However, the risk analysis of non-target species is undertaken through the PSA and the assessment of the target species in the fishery, Western King Prawn (*Penaeous (Melicertus) latisulcatus*), is undertaken annually in the stock status advice note prepared by SARDI. While the impact of the fishing gear on the ecosystem is now assessed by the CSA. Given the risk assessment of the fishing activity on the target species, bycatch and habitat is undertaken through other processes the Fletcher model has been used just to assess the risk of general ecosystem impacts and external impacts on the fishery through component trees.

National ESD Reporting Framework for Fisheries

The '*National ESD Reporting Framework for Fisheries*' developed by Fletcher et al. (2002) has been used to assess the risks for general ecosystem impacts and external impacts on industry. The '*National ESD Reporting Framework for Fisheries*' is described in pages 22 to 26 of the '2014 ESD Risk Assessment of the Spencer Gulf Prawn Fishery'.

The '2014 ESD Risk Assessment of the Spencer Gulf Prawn Fishery' also developed component trees for Non-retained species, Community Wellbeing and Goverance. A non-retained species component tree was not developed for this document, as the PSA assesses the risk of non-retained species. A new component tree was not developed for Community wellbeing as Community Wellbeing issues were considered (by the Research Sub-committee) facets of the fishery that could not be controlled. While a component tree was not developed for Governance as governance around the management of the fishery is considered to be of an extremely high standard.

Productivity Susceptibility Analysis (PSA)

The 2016 risk assessment for the GSVPF utilized outcomes for the species components for the Spencer Gulf Prawn Fishery (SGPF) in the absence of specific by-catch survey information from the GSVPF. The risk outcomes for these components were informed from a PSA report of individual target, by-product, discard and TEP species recorded from a 2007 SGPF trawl by-catch survey (Currie et al. 2009). The PSA approach assumes the risk to an ecological component will depend on:

- 1. the productivity of the species, which will determine the rate at which it can recover after potential depletion or damage by fishing activity; and
- 2. the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the species to the fishing operations of the fishery.

An updated Productivity Susceptibility Analysis (PSA) of all species was undertaken by the SGWCPFA Research Sub Committee on 20 May 2019. Present at this meeting was James Brook (Conservation Council SA), Simon Clark (EO SGWCPFA), Chay Haldane, Ashley Lukin, Tony Lukin, Craig Noell (SARDI), Greg Palmer (Chair) and Steve Shanks (PIRSA). This updated PSA included:

- Species identified on the 2013 bycatch survey (Burnell et al. 2015);
- EPBC Act-listed and cetacean species that were not identified on the 2007 or 2013 bycatch survey but are reported to have been involved in an interaction with the SGPF within the last five years;
- Revised PSA scores, where applicable, for 2007 bycatch survey species previously assessed as high or medium risk (Currie et al. 2009; PIRSA 2014b).

For specific information on the PSA method applied, refer to pages 28 to 31 of the '2014 ESD risk assessment for the Spencer Gulf Prawn Fishery' (PIRSA 2014).

The 2014 PSA was updated (from a previous assessment of 195 species caught on a SGPF by-catch survey in 2007) to assess an additional 18 species including 16 species identified on a 2013 SGPF by-catch survey (including 1 EPBC Act-listed species), and another 1 listed species and 1 cetacean species of conservation interest reported to have been involved in an interaction with the SGPF based on logbook data. PSA of the additional 17 species identified 1 species assessed as high risk, 12 species as moderate risk and 4 species as low risk.

Consequence Spatial Analysis (CSA) of habitat

The MSC assessment and certification of a fishery includes a requirement that 'the Unit of Assessment (UoA) (i.e. the fishery) does not cause serious and irreversible harm to habitat structure and function' (referred to as the Habitats outcome indicator, PI 2.4.1, MSC 2018a). To enable assessment of PI 2.4.1 the MSC subsequently developed the Consequence Spatial Analysis (CSA) methodology, based on the 'habitat PSA' component of the ERAEF (Hobday et al. 2007, 2011; Williams et al. 2011). The CSA was structured around a set of attributes that describe fishing gear impacts (**consequence**) and the habitat (**spatial**) for each habitat being affected by the gear type(s) (Table 1).

Table 1. Consequence and spatial attributes for the CSA.

Consequence attributes	Spatia	l attributes
Habitat productivity 1. Regeneration of biota	1. 2.	Gear footprint Spatial overlap
2. Natural disturbance	3.	Encounterability
Gear-habitat interaction		
3. Removability of biota		
4. Removability of		
substratum		
5. Substratum hardness		
6. Substratum ruggedness		
7. Seabed slope		

The CSA methodology was applied to the SGPF as described in the MSC Fisheries Certification Process v2.1 (MSC 2018b). It comprises four main steps:

- 1. Define the habitat;
- 2. Score the consequence attributes;
- 3. Score the spatial attributes; and
- 4. Determine the CSA score and equivalent MSC score.

Details of each step, including rationale for justification of the proposed scores, are provided in Appendix 1.

Research sub-committee consultation on ESD risk assessment

A Spencer Gulf and West Coast Prawn Fishermen's Association (SGWCPFA) Research Sub-committee meeting was held on 20 May 2019 to consult on the PSA, CSA and the component trees under the Fletcher model.

Consultation on the PSA involved going through the PSA undertaken by SARDI (See Table 6) and determining if the scoring provided under the PSA model headings (i.e. Availability, Encounterability, Selectivity and Post-capture mortality) accurately reflected the status of each of the species.

Based on this analysis the Research sub-committee developed a list of species they considered to be high risk (Table 2). Snapper and King George Whiting were ranked as high risk under the PSA analysis, they were excluded from further management arrangements as management of these stocks in Spencer Gulf are undertaken regularly through the Marine Scalefish Fishery. No performance report for these species was required. A non designated holothurian species was also considered not to require a performance reports as it was considered an anomaly as it did not reference a specific species.

Table 2: Species ranked as a high risk under the PSA analysis (species with blue font contributed to more than 2% of the by-catch composition).

Scientific name	Common name
Repomucenus calcaratus	Spotted Dragonet
Thamnaconus degeni	Bluefin Leatherjacket
Lepidotrigla papilio	Spiny Gurnard
Pseudocaranx wrighti	Skipjack Trevally
Parequula melbournensis	Silverbelly
Foetorepus calauropomus	Common Stinkfish
Pseudorhombus jenynsii	Smalltooth Flounder
Scobinichthys granulatus	Rough Leatherjacket
Diodon nicthemerus	Globefish
Acanthaluteres vittiger	Toothbrush Leatherjacket
Sardinops sagax	Australian Sardine
Gonorynchus greyi	Beaked Salmon
Neoplatycephalus richardsoni	Tiger Flathead
Sepioteuthis australis	Southern Calamari
Neosebastes bougainvillii	Gulf Gurnard Perch
Upeneichthys vlamingii	Bluespotted Goatfish
Parapriacanthus elongatus	Elongate Bullseye
Sepia novaehollandae	a cuttlefish (not designated)
Cynoglossus broadhursti	Southern Tongue Sole
Sillaginodes punctata*	King George Whiting
Pagrus auratus*	Snapper
Holothuria (Thymiosycia)hartmeyeri*	a holothurian (not designated)
TEPS	
Tursiops truncatus	Common Bottlenose Dolphin

* These species were considered not to require a performance report due to existing management arrangements and, in the case of the holothurian species, the consideration of it being an anomaly.

Following the development of the list of high risk species by the research sub-committee, additional species were also identified as species of interest, that were not classified as high risk but due to either the fact they make up more than 5% of the total catch, are a species from a commercial fishery or meet the criteria of a Threatened, Endangered or Protected species (TEPs), would require consideration of management arrangements. It was also viewed that these criteria for listing species as 'species of interest' were consistent with Sections SA 3.4.2.1 and SA 3.4.2.2 of the Marine Stewardship Council (MSC) Fisheries Standard 2.01.

Table 3: Species of	f interest for co	onsideration of	management	arrangements.
---------------------	-------------------	-----------------	------------	---------------

Scientific name	Common name	Family name
Filicampus tigris	Tiger Pipefish	Syngnathidae
Histiogamphelus cristatus	Rhino Pipefish	Syngnathidae
Leptoichthys fistularius	Brushtail Pipefish	Syngnathidae
Phycodurus eques	Leafy Seadragon	Syngnathidae
Phyllopteryx taeniolatus	Common Seadragon	Syngnathidae
Stigmatopora argus	Spotted Pipefish	Syngnathidae
Hyporhamphus melanochir	Southern Garfish	Hemiramphidae
Ibacus peronii	Eastern Balmain Bug	Scyllaridae
Portunus armatus	Blue Swimmer Crab	Portunidae

The committee also considered the CSA report for habitats prepared by SARDI (see Table 7). No alterations to the CSA report for habitats provided by SARDI were made by the Research sub-committee.

The committee analysed the component trees for general ecosystems and external impacts on industry provided in the '2014 ESD Risk Assessment for the Spencer Gulf Prawn Fishery'. The subject matter and the scores for each subject matter in the component trees were reassessed and where appropriate modifications were made. Figures 1 and 2 in the results show the new component trees developed for

General ecosystem and External impact on Industry developed through the consultation undertaken on 20 May 2019 through the Research sub-committee.

Risk Ratings

Several risk ratings have been updated from the '2014 ESD Risk Assessment for the Spencer Gulf Prawn Fishery'. Further, the component trees for Community Wellbeing and Governance have been removed as they are not required to meet the requirements for the Act and haven't been used in making management decisions in the fishery. Additionally, the 'economic' component of the 'External Impacts on the Fishery' has been removed as the risks are not ecological in nature.

For those ratings that were updated risk was calculated in accordance with Fletcher et al. 2002.

From the consequence and likelihood scores, the overall risk value was calculated (i.e. risk = consequence x likelihood). The calculated risk values were then linked to one of the colour-coded risk categories, the relationship for which is illustrated by a risk matrix (Table 4).

Table 4. Risk matrix of consequence and likelihood. The numbers in the cells indicate the risk value, and the colours indicate risk categories (see Appendix 2for more details) (source: Fletcher et al. 2002).

			Conse	quence		
Likelihood	Negligible (0)	Minor (1)	Moderate (2)	Severe (3)	Major (4)	Catastrophic (5)
Remote (1)	0	1	2	3	4	5
Rare (2)	0	2	4	6	8	10
Unlikely (3)	0	3	6	9	12	15
Possible (4)	0	4	8	12	16	20
Occasional (5)	0	5	10	15	20	25
Likely (6)	0	6	12	18	24	30

Table 5. Relationship between risk value, risk category, management response and reporting requirements (source: Fletcher et al. 2002).

Risk category	Risk values	Likely management response	Likely reporting requirements
Negligible	0	Nil	Short justification only
Low	1-6	None specific	Full justification needed
Moderate	7-12	Specific management needed	Full performance report
High	13-18	Possible increase in management activities needed	Full performance report
Extreme	>18	Likely additional management activities needed	Full performance report

Results

Table 6: Updated PSA undertaken by SARDI. Highlighted cells indicate revised scores (green = -1, red = +1). Revised scores that resulted in a different combined score and risk are indicated with arrows (red = increased risk, green = reduced risk).

							P	roduc	tivity	Score	s [1-3]]		Su	scept	ibility S	Score	es [1-3]					
ERA Species ID	Species type	Scientific name	Common name	Family name	Role in fishery	Average age at maturity	Average max age	Fecundity	Average max size	Average size at maturity Reproductive	strategy Trophic level	Total Productivity	(average)	Availability	Encounterability	Selectivity Post-capture	mortality	Total (multiplicative)	PSA Score	MSC PSA-derived score	Risk Category Name	MSC scoring guidepost	Change in risk
6	Teleost	Neoplatycephalus aurimaculatus	Toothy Flathead	Platycephalidae	DI	1	2	1	1	1 1	13	1.4	3	2	3	3 3	3	2.33	2.73	77	Med	60-79	
11	Invertebrate	Nototodarus gouldi	Gould's Squid	Ommastrephidae	DI	1	1	2	1	1 2	2 2	1.4	3	2	3	3 3	3	2.33	2.73	77	Med	60-79	
13	Teleost	Repomucenus calcaratus	Spotted Dragonet	Callionymidae	DI	1	1	3	1	1 1	3	1.5	7	3	3	3 3	3	3.00	3.39	50	High	<60	
18	Teleost	Thamnaconus degeni	Bluefin Leatherjacket	Monacanthidae	DI	1	1	1	1	1 2	2 3	1.4	3	3	3	3 3	3	3.00	3.32	53	High	<60	
22	Chondrichthyan	Urolophus gigas	Spotted Stingaree	Urolophidae	DI	1	2	3	1	2 3	3 2	2.0	0	1	3	3 1	1	1.20	2.33	88	Low	280	4
20	Invertebrate	Portugue ormatus	Blue Swimmer Crab	Dortunidae		4	4	4	4	1 1	2 2	1.4	0	2	2	2 2	2	2.33	2.15	80	Low	>90	ъ
94	Teleost	Neosebastes pandus	Bighead Gumard Perch	Neosebastidae	DI	3	3	3	1	1 1	3	21	4	2	3	3 3	3	2.33	3.16	61	Med	60-79	· ·
99	Teleost	Gymnapistes marmoratus	Soldier	Tetrarogidae	DI	1	2	3	1	1 1	2	1.5	7	ī	3	3 3	3	1.65	2.28	90	Low	≥80	
100	Teleost	Glyptauchen panduratus	Goblinfish	Tetrarogidae	DI	1	2	3	1	1 1	2	1.5	7	1	3	3 3	3	1.65	2.28	90	Low	≥80	
104	Teleost	Lepidotrigla papilio	Spiny Gurnard	Triglidae	DI	1	2	1	1	1 1	3	1.4	3	3	3	3 3	3	3.00	3.32	53	High	<60	
109	Teleost	Pterygotrigla polyommata	Latchet	Triglidae	DI	1	2	1	1	1 1	2	1.2	9	1	3	3 3	3	1.65	2.09	93	Low	≥80	
118	Teleost	Platycephalus speculator	Southern Bluespotted Flathead	Platycephalidae	DI	1	2	1	1	1 1	3	1.4	3	2	3	3 3	3	2.33	2.73	77	Med	60-79	
122	Teleost	Pegasus lancifer	Sculptured Seamoth	Pegasidae	DI	3	3	3	1	1 1	3	2.1	4	2	3	2 3	3	1.88	2.85	73	Med	60-79	
124	Teleost	Caesioperca lepidoptera	Butterfly Perch	Serranidae	DI	1	1	1	1	1 1	2	1.1	4	1	3	3 3	3	1.65	2.01	95	Low	≥80	
125	Teleost	Sillaginodes punctata	King George Whiting	Sillaginidae		1	1	1	1	1 1	2	1.1	4	3	3	3 3	3	1.05	2.01	95	High	200	
142	Teleost	Deeudocarany wrighti	Skipiack Travally	Carangidae	DI	- 11	2	4	1	1 1	3	1.2	2	2	2	2 3	2	3.00	3.20	53	High	<60	
156	Teleost	Pareguula melbournensis	Silverbelly	Gerreidae	DI	- i 1	1	3	1	1 1	3	1.5	7	3	3	3 3	3	3.00	3.39	50	High	<60	
158	Teleost	Pagrus auratus	Snapper	Sparidae	DI	1	2	2	2	1 1	3	1.7	1	3	3	3 3	3	3.00	3.46	47	High	<60	
166	Teleost	Pempheris multiradiata	Bigscale Bullseye	Pempheridae	DI	1	1	3	1	1 1	2	1.4	3	1	3	3 3	3	1.65	2.18	92	Low	≥80	1
168	Teleost	Enoplosus armatus	Old Wife	Enoplosidae	DI	3	3	3	1	1 1	2	2.0	0	1	3	3 3	3	1.65	2.59	82	Low	≥80	
170	Teleost	Pentaceropsis recurvirostris	Longsnout Boarfish	Pentacerotidae	DI	1	1	3	1	1 1	1	1.2	9	1	3	3 3	3	1.65	2.09	93	Low	≥80	
174	Teleost	Parazanclistius hutchinsi	Short Boarfish	Pentacerotidae	DI	1	1	3	1	1 1	2	1.4	3	1	3	3 3	3	1.65	2.18	92	Low	≥80	
175	Teleost	Oplegnathus woodwardi	Knifejaw	Oplegnathidae	DI	1	1	3	1	1 1	2	1.4	3	1	3	3 3	3	1.65	2.18	92	Low	≥80	
1//	Teleost	Nemadactylus douglasii	Grey Morwong	Cheilodactylidae	DI	1	2	1	1	1 1	2	1.2	9	1	3	3 3	3	1.65	2.09	93	Low	≥80	
183	Teleost	Sphyraena oblusala Sphyraena povaebollandiae	Striped Barracuda	Sphyraenidae		1	2	1	1	1 1	1 3	1.2	9	1	3	3 3	3	1.65	2.09	93	LOW	280	
103	Teleost	Ichthysconus harbatus	Eringe Stargazer	Uranosconidae	DI	4	2	2	1	1 1	3	17	1	1	3	3 3	3	1.65	2.30	87	Low	>80	
194	Teleost	Kathetostoma laeve	Common Stargazer	Uranoscopidae	DI	- i 1	2	3	1	2 1	3	1.8	6	2	3	3 3	3	2.33	2.98	68	Med	60-79	1
201	Teleost	Foetorepus calauropomus	Common Stinkfish	Callionymidae	DI	1	1	3	1	1 1	3	1.5	7	3	3	3 3	3	3.00	3.39	50	High	<60	
221	Teleost	Pseudorhombus jenynsii	Smalltooth Flounder	Paralichthyidae	DI	1	1	1	1	1 1	3	1.2	9	3	3	3 3	3	3.00	3.26	56	High	<60	
225	Teleost	Ammotretis lituratus	Spotted Flounder	Pleuronectidae	DI	1	2	1	1	1 1	2	1.2	9	1	3	3 3	3	1.65	2.09	93	Low	≥80	4
231	Teleost	Eubalichthys mosaicus	Mosaic Leatherjacket	Monacanthidae	DI	1	2	1	1	1 2	2 2	1.4	3	2	3	3 3	3	2.33	2.73	77	Med	60-79	
232	Teleost	Meuschenia scaber	Velvet Leatherjacket	Monacanthidae	DI	1	2	1	1	1 2	2 2	1.4	3	1	3	3 3	3	1.65	2.18	92	Low	≥80	
233	Teleost	Nelusetta ayraudi	Ocean Jacket	Monacanthidae	DI	1	2	1	2	2 1	2	1.5	2	1	3	3 3	3	1.65	2.28	90	Low	≥80	
234	Teleost	Scobinicntnys granulatus Eubalichthys gunnii	Rough Leatherjacket	Monacanthidae			2	1	1	1 4	2 2	1.2	9	3	3	3 3	3	3.00	3.26	55	High	<60	4
237	Teleost	Meuschenia frevcineti	Sixspine Leatheriacket	Monacanthidae	DI	1	2	1	1	1 2	2 1	12	ā	1	3	3 3	3	1.65	2.01	93	Low	>80	
239	Teleost	Aracana ornata	Ornate Cowfish	Ostraciidae	DI	3	3	3	i i	1 1	3	2.1	4	2	3	3 3	3	2.33	3.16	61	Med	60-79	1
241	Teleost	Aracana aurita	Shaw's Cowfish	Ostraciidae	DI	3	3	3	1	1 1	3	2.1	4	2	3	3 3	3	2.33	3.16	61	Med	60-79	
243	Teleost	Omegophora armilla	Ringed Toadfish	Tetraodontidae	DI	1	1	2	1	1 2	2 2	1.4	3	1	3	3 3	3	1.65	2.18	92	Low	≥80	4
244	Teleost	Tetractenos glaber	Smooth Toadfish	Tetraodontidae	DI	1	1	2	1	1 2	2 3	1.5	7	2	3	2 3	3	1.88	2.45	86	Low	≥80	•
248	Teleost	Contusus brevicaudus	Prickly Toadfish	Tetraodontidae	DI	1	1	2	1	1 2	2 3	1.5	7	2	3	2	3	1.88	2.45	86	Low	≥80	•
249	leleost	Diodon nicthemerus	Globetish	Diodontidae	DI	2	2	2	1	1 1	3	1.7	1	3	3	3 3	3	3.00	3.46	4/	High	<60	4
260	Chondrichthyan	Heterodontus portusjacksoni	Port Jackson Shark	Heterodontidae	DI	2	3	3	2	2 2	2 2	2.2	9	3	3	3 1	1	1.65	2.82	(4	Med	60-79	
200	Telecet	Callorninchus milli	Created Elounder	Bothidae		1	4	2	4	2 2	2	1.7	2	2	2	3 3	2	1.00	2.30	77	Low	200	4
310	Teleost	Acanthaluteres spilomelanurus	Bridled Leatheriacket	Monacanthidae	DI	1	1	1	1	1 1	1	1.0	0	2	3	3 3	3	2.33	2.53	83	Low	≥80	
311	Teleost	Acanthaluteres vittiger	Toothbrush Leatheriacket	Monacanthidae	DI	- i -	2	1	1	1 1	1	1.1	4	3	3	3 3	3	3.00	3.21	59	High	<60	
332	Teleost	Centroberyx affinis	Redfish	Berycidae	DI	1	3	3	1	1 1	2	1.7	1	1	3	3 3	3	1.65	2.38	87	Low	≥80	
369	Chondrichthyan	Parascyllium ferrugineum	Rusty Carpetshark	Parascylliidae	DI	3	3	3	1	2 2	2 2	2.2	9	1	3	3 3	3	1.65	2.82	74	Med	60-79	
391	Chondrichthyan	Asymbolus vincenti	Gulf Catshark	Scyliorhinidae	DI	1	1	3	1	2 2	2 3	1.8	6	1	3	3 3	3	1.65	2.48	85	Low	≥80	
511	Teleost	Arripis georgianus	Australian Herring	Arripidae	DI	2	2	1	1	1 1	3	1.5	7	1	3	3 3	3	1.65	2.28	90	Low	≥80	
539	Teleost	Chelidonichthys kumu	Red Gurnard	Triglidae	DI	1	2	1	1	1 1	2	1.2	9	1	3	3 3	3	1.65	2.09	93	Low	≥80	
000	Chandrichthurs	Crieilodactylus nigripes	Magple Perch	Chellodactylidae		1	3	1	1	1 1	1	1.2	3	1	3	3 3	2	1.65	2.09	93	LOW	280	4
000	Chondrichthyan	Friscophorus nucipinnis Squatina australis	Australian Angelsbark	Squatinidae		2	3	3	2	2 3	, 2	2.1	7	2	3	3 3	1	1.05	2.70	70	Med	60-79	
669	Chondrichthyan	Aptychotrema vincentiana	Western Shovelnose Rav	Rhinobatidae	DI	1	1	3	1	2 3	2 2	1.8	6	2	3	3 3	3	2.33	2.98	68	Med	60-79	
							-	-	-		-			-	-								- 1

						Productivity Scores [1-3]			l	Susceptibility Scores [1-3]											
ERA Species ID	Species type	Scientific name	Common name	Family name	Role in fishery	Average age at maturity	Average max age	Fecundity	Average max size Averane size at	maturity Reproductive	strategy Trophic level	Total Productivity (average)	Availability	Encounterability	Selectivity Post-capture mortality	Total (multiplicative)	PSA Score	MSC PSA-derived score	Risk Category Name	MSC scoring guidepost	Change in risk
687	Chondrichthyan	Trygonorrhina fasciata	Southern Fiddler Ray	Rhinobatidae	DI	2	2	3	2	2 3	2	2.29	2	3	32	1.88	2.96	69	Med	60-79	4
714	Chondrichthyan	Hypnos monopterygium	Coffin Ray	Torpedinidae	DI	2	3	3	1	1 3	2	2.14	1	3	3 3	1.65	2.70	78	Med	60-79	4
757	l eleost Chandrichthuran	Lepidotrigia spinosa	Shortfish Gumard	Inglidae	DI	1	2	1	1	1 1	3	1.43	2	3	3 3	2.33	2.73	11	Med	60-79	4
767	Chondrichthyan	Dasyalis brevicaudala	Smooth Sungray Black Stingray	Dasyalidae		2	2	3	2	2 3	2	2.43	1	3	3 2	1.00	2.82	74	Med	60-79	4
772	Chondrichthyan	Urolophus cruciatus	Banded Stingaree	Urolophidae	DI	2	1	3	1	1 3	2	1.86	1	3	3 1	1.00	2.02	91	Low	>80	
774	Chondrichthyan	Urolophus paucimaculatus	Sparsely-spotted Stingaree	Urolophidae	DI	ĩ	2	3	i	1 3	2	1.86	2	3	3 1	1.43	2.34	88	Low	≥80	•
784	Chondrichthyan	Myliobatis australis	Southern Eagle Ray	Myliobatidae	DI	2	2	3	2	2 3	2	2.29	1	3	3 3	1.65	2.82	74	Med	60-79	
812	Chondrichthyan	Dipturus cerva	Whitespotted Skate	Rajidae	DI	1	1	3	1	2 2	2	1.71	3	3	3 1	1.65	2.38	87	Low	≥80	
825	Teleost	Sardinops sagax	Australian Sardine	Clupeidae	DI	1	1	1	1	1 1	2	1.14	3	3	3 3	3.00	3.21	59	High	<60	1
831	Teleost	Engraulis australis	Australian Anchovy	Engraulidae	DI	1	1	2	1	1 1	2	1.29	2	3	2 3	1.88	2.27	90	Low	≥80	
874	Teleost	Gonorynchus greyi	Beaked Salmon	Gonorynchidae	DI	3	3	3	1	1 1	1	1.86	3	3	3 3	3.00	3.53	43	High	<60	
007	Teleost	Hyporhamphus melanochir	Southern Carfieb	Hemiramphidae	D	4	2	2	1	1 1	3 1	1./1	2	2	2 2	1.05	2.30	88	Low	200	
903	Teleost	Sorosichthys ananassa	Little Pineapplefish	Trachichthvidae	DI	1	2	1	1	1 2	3	1.43	1	3	3 3	1.65	2.30	90	Low	≥80	
914	Teleost	Filicampus tigris	Tiger Pipefish	Syngnathidae	TEP	1	1	2	1	1 2	3	1.57	2	3	3 3	2.33	2.81	75	Med	60-79	4
916	Teleost	Pseudophycis bachus	Red Cod	Moridae	DI	1	1	3	1	1 1	3	1.57	1	3	3 3	1.65	2.28	90	Low	≥80	4
921	Teleost	Genypterus tigerinus	Rock Ling	Ophidiidae	DI	1	3	3	2	2 1	3	2.14	2	3	3 3	2.33	3.16	61	Med	60-79	
954	Teleost	Histiogamphelus cristatus	Rhino Pipefish	Syngnathidae	TEP	1	1	2	1	1 2	2	1.43	1	3	3 3	1.65	2.18	92	Low	≥80	
978	Teleost	Leptoichthys fistularius	Brushtail Pipefish	Syngnathidae	TEP	1	2	2	1	1 2	2	1.57	1	3	3 3	1.65	2.28	90	Low	≥80	4
999	Chondrichthyan	Mustelus antarcticus	Gummy Shark	Inakidae	DI	1	2	3	1	2 3	3	2.14	1	3	3 3	1.65	2.70	78	Med	60-79	
1010	Teleost	Phycodurus eques	Common Soudragon	Syngnathidae	TED	1	2	2	-	1 2	2	1.57		2	3 3	1.00	2.20	90	Low	200	
1026	Teleost	Stigmatopora argus	Spotted Pinefish	Syngnathidae	TEP	1	1	2	1	1 2	2	1.37	1	3	3 3	1.65	2.20	92	Low	>80	
1020	Teleost	Neoplatycephalus richardsoni	Tiger Flathead	Platycephalidae	DI	i	2	ĩ	i	1 1	2	1.29	3	3	3 3	3.00	3.26	56	High	<60	
1040	Chondrichthyan	Pristiophorus cirratus	Common Sawshark	Pristiophoridae	DI	1	2	3	2	2 3	3	2.29	1	3	3 3	1.65	2.82	74	Med	60-79	1
1065	Chondrichthyan	Dipturus whitleyi	Melbourne Skate	Rajidae	DI	2	3	3	2	2 2	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	4
1078	Chondrichthyan	Squalus megalops	Spikey Dogfish	Squalidae	DI	2	3	3	1	2 3	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	4
1087	Teleost	Thyrsites atun	Barracouta	Gempylidae	DI	1	2	1	2	2 1	3	1.71	2	3	3 3	2.33	2.89	72	Med	60-79	4
1088	Teleost	Trachurus declivis	Common Jack Mackerel	Carangidae	DI	1	2	1	1	1 1	3	1.43	2	3	3 3	2.33	2.73	77	Med	60-79	4
1197	Invertebrate	Orectolopus maculatus Glucymeris (Glucymeris) striatularis	spotted wooppegong	Clycymerididae		2	3	3	3	2 3	3	2.71	1	3	3 3	1.05	3.10	07	Low	>80	
1269	Invertebrate	Atrina (Atrina) tasmanica	a razor clam (not designated)	Pinnidae	DI	3	3	3	1	i i	1	1.45	1	3	3 3	1.65	2.48	85	Low	≥80	
1270	Invertebrate	Ostrea angasi	Native Ovster	Ostreidae	DI	3	3	3	1	1 1	1	1.86	1	3	2 3	1.43	2.34	88	Low	≥80	
1271	Invertebrate	Mimachlamys asperrima	Doughboy Scallop	Pectinidae	DI	3	3	1	1	1 1	1	1.57	1	3	1 3	1.20	1.98	95	Low	≥80	
1272	Invertebrate	Pecten fumatus	Commercial Scallop	Pectinidae	DI	1	2	1	1	1 1	1	1.14	2	3	1 3	1.43	1.83	97	Low	≥80	
1274	Invertebrate	Eucrassatella kingicola	a cockle (not designated)	Crassatellidae	DI	3	3	3	1	1 1	1	1.86	2	3	2 3	1.88	2.64	80	Low	≥80	
1280	Invertebrate	Sepioteuthis australis	Southern Calamari	Loliginidae	BP	1	1	2	1	1 2	2	1.43	3	3	3 3	3.00	3.32	53	High	<60	4
1285	Invertebrate	Octopus berrima	an octopus (not designated)	Octopodidae	DI	1	1	3	1	2 2	3	1.86	1	3	3 3	1.65	2.48	85	Low	≥80	
1297	Invertebrate	Amoria (Amoria) undulata	a pudibrapab (pot designated)	Chromodorididoo	DI	2	2	2	1	1 2	2	2.00		2	3 3	1.00	2.59	74	Low	200	4
1304	Invertebrate	Ophionereis schaveri	a brittlestar (not designated)	Ophionereididae	DI	3	3	2	1	1 2	3	2.14	1	3	3 3	1.65	2.70	78	Med	60-79	4
1306	Invertebrate	Ophiothrix (Ophiothrix) caespitosa	a brittlestar (not designated)	Ophiotrichidae	DI	2	1	3	1	2 2	3	2.00	1	3	3 3	1.65	2.59	82	Low	≥80	
1342	Invertebrate	Lamarckdromia globosa	Fringed Sponge Crab	Dromiidae	DI	3	3	3	1	1 2	1	2.00	1	3	1 3	1.20	2.33	88	Low	≥80	
1348	Invertebrate	Ovalipes australiensis	Common Sand Crab	Portunidae	DI	3	3	3	1	1 2	1	2.00	1	3	3 3	1.65	2.59	82	Low	≥80	
1367	Teleost	Neosebastes bougainvillii	Gulf Gurnard Perch	Neosebastidae	DI	3	3	3	1	1 1	3	2.14	3	3	3 3	3.00	3.69	35	High	<60	4
1401	l eleost	Eubalichthys quadrispinis	Fourspine Leatherjacket	Monacanthidae	DI	1	2	1	1	1 2	2	1.43	1	3	3 3	1.65	2.18	92	Low	280	4
1525	Invertebrate	Melicertus latisulcatus	Western King Prawn	Penaeidae	ТА	1	1	1	1	1 1	1	1.00	3	3	3 3	3.00	3.16	61	Med	60-79	4
1664	Teleost	Hippocampus abdominalis	Bigbelly Seahorse	Syngnathidae	TEP	1	1	2	1	1 2	2	1.43	1	3	3 3	1.65	2.18	92	Low	≥80	
1806	Invertebrate	Ibacus peronii	Eastern Balmain Bug	Scyllaridae	BP	1	3	2	1	1 2	1	1.57	3	3	2 3	2.33	2.81	75	Med	60-79	4
1808	Invertebrate	Luidia australiae	a seastar (not designated)	Luidiidae	DI	3	3	3	1	1 1	3	2.14	1	3	3 3	1.65	2.70	78	Med	60-79	
1822	Teleost	Sillago bassensis	School Whiting	Sillaginidae	DI	1	1	1	1	1 1	2	1.14	2	3	3 3	2.33	2.59	82	Low	≥80	4
2495	l eleost	Kanekonia queenslandica	Deep Velvetfish	Aploactinidae	DI	3	3	3	1	1 3	2	2.29	1	3	2 3	1.43	2.69	78	Med	60-79	
7620	Teleost	Erugosquilla granami Trachichthys australis	a manus snrimp (not designated) Southern Roughy	Squillidae Trachichthyidae		1	2	3	1	1 1	3	1.71	3	3	J ∠ 3 3	2.33	2.89	90	Low	>80	
7644	Teleost	Ontivus aarammus	Western Roughy	Trachichthyidae	DI	1	2	3	1	1 1	- 3	1.37	1	3	2 3	1.03	2.20	91	Low	>80	
7761	Teleost	Pelates octolineatus	Western Striped Grunter	Terapontidae	DI	1	ĩ	1	1	1 2	2	1.29	2	3	3 3	2.33	2.66	80	Low	≥80	4
7771	Teleost	Maxillicosta scabriceps	Little Gurnard Perch	Neosebastidae	DI	3	3	3	1	1 1	3	2.14	3	3	2 3	2.33	3.16	61	Med	60-79	<u> </u>
7849	Teleost	Neopataecus waterhousii	Whiskered Prowfish	Pataecidae	DI	3	3	3	1	1 3	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	
7915	Teleost	Cnidoglanis macrocephalus	Estuary Cobbler	Plotosidae	DI	1	2	2	1	2 3	1	1.71	1	3	3 3	1.65	2.38	87	Low	≥80	4
/947	Teleost	Rhycherus filamentosus	Lasselled Anglerfish	Antennariidae	DI	3	3	3	1	1 3	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	
/948	releost	Phyllophryne scortea	whitespotted Angleriish	Antennariidae	DI	3	3	3	1	1 3	- 3	2.43	1	3	2 3	1.43	2.82	(4	Med	60-79	4

						Productivity Scores [1			tivity Scores [1-3]		Susceptibility Sco			oility Score	y Scores [1-3]					
ERA Species ID	Species type	Scientific name	Common name	Family name	Role in fishery	Average age at maturity	Average max age Fecundity	Average max size	Average size at maturity Reproductive	strategy Trophic level	Total Productivity (average)	Availability	Encounterability	Serectivity Post-capture mortality	Total (multiplicative)	PSA Score	MSC PSA-derived score	Risk Category Name	MSC scoring guidepost	Change in risk
8003	Chondrichthyan	Sutorectus tentaculatus	Cobbler Wobbegong	Orectolobidae	DI	3	3 3	1	2	3 2	2.43	2	3 3	3 1	1.43	2.82	74	Med	60-79	4
8164	Teleost	Spratelloides robustus	Blue Sprat	Clupeidae	DI	1	1 1	1	1 2	2 2	1.29		3 3	5 3	1.65	2.09	93	Low	280	
0100	Chondrighthyan	Hyperiophus vitiatus	Coastal Stingares	Urolophidae	DI		1 1	- 1	1 1	2 2	1.14		2 4	2 3	1.20	1.71	90	Low	200	4
8303	Teleost	Austrolabrus maculatus	Blackspotted Wrasse	Labridae		1	2 J 1 3	1	1	2	1.00		3 3	2 3	1.20	2.21	91	Low	>80	
8326	Teleost	Pictilabrus laticlavius	Senator Wrasse	Labridae	DI	1	2 3	1	1	1 2	1.43	1	3 3	2 3	1.45	2.02	90	Low	>80	
8333	Teleost	Brachaluteres iacksonianus	Southern Pygmy Leatheriacket	Monacanthidae	DI	1	1 3	1	1 2	2 2	1.57	3	3 2	2 3	2.33	2.81	75	Med	60-79	4
8341	Teleost	Cantheschenia longipinnis	Smoothspine Leatherjacket	Monacanthidae	DI	1	1 3	1	1 2	2 1	1.43	1	3 3	3 3	1.65	2.18	92	Low	≥80	4
8362	Teleost	Taratretis derwentensis	Derwent Flounder	Pleuronectidae	DI	1	2 1	1	1 3	32	1.57	1	3 3	3 3	1.65	2.28	90	Low	≥80	
8413	Teleost	Chelmonops curiosus	Western Talma	Chaetodontidae	DI	1	1 3	1	1 1	1 2	1.43	1	3 3	3 3	1.65	2.18	92	Low	≥80	
8597	Teleost	Polyspina piosae	Orangebarred Putter	Tetraodontidae	DI	1	1 3	1	1 2	2 3	1.71	2	3 2	2 3	1.88	2.54	83	Low	≥80	•
8642	Teleost	Cristiceps australis	Southern Crested Weedfish Bluespotted Coatfish	Clinidae Mullidae		1	13	1	1 1	1 3	1.57	1	3 3	3 3	1.65	2.28	90	Low	280	
8682	Teleost	Paranriacanthus elongatus	Elongate Bullseve	Pempheridae	DI	1	1 3	1	1	1 3	1.25	3	3 3	3 3	3.00	3.39	50	High	<60	
8683	Teleost	Pempheris klunzingeri	Rough Bullseye	Pempherididae	DI	1	1 3	1	1 1	1 2	1.43	2	2 3	3 3	1.88	2.36	88	Low	≥80	4
8719	Teleost	Vincentia conspersa	Southern Cardinalfish	Apogonidae	DI	1	1 3	1	1 3	3 2	1.71	1	3 3	3 3	1.65	2.38	87	Low	≥80	
8863	Teleost	Parapercis ramsayi	Spotted Grubfish	Pinguipedidae	DI	1	13	1	1 1	1 3	1.57	2	3 3	3 3	2.33	2.81	75	Med	60-79	
8875	Teleost	Siphonognathus attenuatus	Slender Weed Whiting	Odacidae	DI	1	1 3	1	1 3	32	1.71	1	3 2	2 3	1.43	2.23	91	Low	≥80	
8880	Teleost	Siphonognathus radiatus	Longray Weed Whiting	Odacidae	DI	1	1 3	1	1 3	3 2	1.71	1	2 3	3 3	1.43	2.23	91	Low	≥80	
8881	Teleost	Siphonognathus argyrophanes	Lubemouth Raiphow Cale	Odacidae	DI	1	23	1	1 3	3 2	1.86	1	3 3	3 3	1.65	2.48	85	Low	280	
8884	Teleost	Sinhonognathus caninis	Sharphose Weed Whiting	Odacidae	DI	1	1 3 1 3	1	1 3	3 2	1.57		3 3	2 3	1.05	2.20	90	Low	≥80 ≥80	
8887	Teleost	Paranercis haackei	Wayy Grubfish	Pinguipedidae	DI	1	1 3	1	1 1	1 3	1.57	3	3 2	2 3	2.33	2.20	75	Med	60-79	4
8971	Teleost	Neoodax balteatus	Little Weed Whiting	Odacidae	DI	1	1 3	1	1 3	3 2	1.71	1	3 3	3 3	1.65	2.38	87	Low	≥80	
8988	Teleost	Vincentia badia	Scarlet Cardinalfish	Apogonidae	DI	1	1 3	1	1 3	3 3	1.86	3	3 2	2 3	2.33	2.98	68	Med	60-79	1
8989	Teleost	Vincentia macrocauda	Smooth Cardinalfish	Apogonidae	DI	1	13	1	1 3	3 2	1.71	1	3 2	2 3	1.43	2.23	91	Low	≥80	
9240	Invertebrate	Ischnochiton (Heterozona) cariosus	a chiton (not designated)	Ischnochitonidae	DI	3	33	1	1 1	12	2.00	1	3 2	2 3	1.43	2.46	85	Low	≥80	
9241	Invertebrate	Pinna bicolor	Razor Clam	Pinnidae	DI	1	3 3	1	1 1	1 1	1.57	1	3 3	3 3	1.65	2.28	90	Low	≥80	
9242	Invertebrate	Equichiamys bitrons	Queen Scallop	Pectinidae	DI	2	2 3	1	1	1 1	1.57	2	3 4	2 3	1.88	2.45	86	Low	280	•
9243	Invertebrate	Dosinia victoriae	a venus cockle (not designated)	Veneridae	DI	3	3 3 3 3	1	1	1 1	1.86	2	3 3	2 3	1.45	2.54	80	Low	>80	
9245	Invertebrate	Cleidothaerus albidus	a rock shell (not designated)	Cleidothaeridae	DI	3	3 3	1	1 1	i 1	1.86	2	2 2	2 3	1.58	2.44	86	Low	≥80	
9246	Invertebrate	Sepia apama	Giant Cuttlefish	Sepiidae	DI	1	1 2	1	2 2	2 3	1.71	2	3 3	3 3	2.33	2.89	72	Med	60-79	4
9247	Invertebrate	Sepia novaehollandae	a cuttlefish (not designated)	Sepiidae	DI	1	13	1	1 2	2 3	1.71	3	3 3	3 3	3.00	3.46	47	High	<60	4
9248	Invertebrate	Sepioloidea lineolata	Pinstripe Bottle-Tailed Squid	Sepiadariidae	DI	3	3 3	1	1 2	2 3	2.29	2	3 2	2 3	1.88	2.96	69	Med	60-79	4
9249	Invertebrate	Sepiadarium austrinum	Southern Bottletail Squid	Sepiadariidae	DI	3	33	1	1 1	2 3	2.29	2	3 1	1 3	1.43	2.69	78	Med	60-79	4
9250	Invertebrate	Octopus australis Diodora linealnensia	Southern Octopus	Cotopodidae		3	33 22	1	1 4	2 3	2.29	3	3 3	5 1	1.65	2.82	/4 92	Med	60-79 >90	
9252	Invertebrate	Tugali cicatricosa	a shield limpet (not designated)	Fissurellidae	DI	3	3 3	1	1 3	3 1	2.14	1	2 1	1 3	1.45	2.37	86	Low	>80	
9253	Invertebrate	Clanculus flagellatus	a topshell (not designated)	Trochidae	DI	3	3 3	1	1 3	3 2	2.29	1	2 1	1 3	1.13	2.55	83	Low	≥80	
9254	Invertebrate	Astele (Astele) armillatum	a topshell (not designated)	Calliostomatidae	DI	3	3 3	1	1 2	2 2	2.14	2	3 1	1 3	1.43	2.57	82	Low	≥80	
9255	Invertebrate	Zoila friendii thersites	Black Cowry	Cypraeidae	DI	3	33	1	1 2	2 2	2.14	1	3 3	3 3	1.65	2.70	78	Med	60-79	
9256	Invertebrate	Cymatiella verrucosa	a triton shell (not designated)	Ranellidae	DI	3	3 3	1	1 3	3 2	2.29	1	2 1	1 3	1.13	2.55	83	Low	≥80	
9257	Invertebrate	Fusinus australis	a spindle shell (not designated)	Buccinidae	DI	3	33	1	1 1	1 2	2.00	1	3 3	3 3	1.65	2.59	82	Low	≥80	4
9250	Invertebrate	Astronecten triseriatus	a chinold (not designated)	Astropectinidae		3	33 33	1	1 4) I I 3	2.14	1	3 4	2 3	1.00	2.05	73	Med	60.79	
9260	Invertebrate	Goniodiscaster seriatus	a seastar (not designated)	Oreasteridae	DI	3	3 3	1	1 1	1 3	2.14	1	3 2	2 3	1.03	2.57	82	Low	≥80	
9261	Invertebrate	Conocladus australis	Southern Basketstar	Gorgonocephalidae	DI	3	3 3	1	1 1	i 1	1.86	1	3 3	3 3	1.65	2.48	85	Low	≥80	
9262	Invertebrate	Goniocidaris tubaria	a sea urchin (not designated)	Cidaridae	DI	3	2 3	1	1 1	1 1	1.71	1	3 2	2 3	1.43	2.23	91	Low	≥80	
9263	Invertebrate	Centrostephanus rodgersii	Longspine Sea Urchin	Diadematidae	DI	1	23	1	1 1	1 1	1.43	1	3 1	1 3	1.20	1.87	97	Low	≥80	
9264	Invertebrate	Amblypneustes pallidus	a sea urchin (not designated)	Temnopleuridae	DI	3	2 3	1	1 1	1 1	1.71	1	3 1	1 3	1.20	2.09	93	Low	≥80	
9265	Invertebrate	Ceto cuviena Holothuria (Thymicsusia) hortmauari	a noiothurian (not designated)	Psolidae Holothuriidaa		3	33 33	1	1 1	I 1 I 4	1.86	1	3 3	5 3	1.65	2.48	85	Low	≥80	
9267	Invertebrate	Nerocila serra	a noromunan (not designated)	Cymothoidae	DI	3	5 5 3 3	1	1 1	3 2	2.29	1	3 3	3 3	1.20	2.58	43	Low	>80	
9268	Invertebrate	Metapenaeopsis sp.	Velvet Prawn	Penaeidae	DI	3	3 3	1	1 1	1 3	2.14	3	3 1	1 3	1.65	2.70	78	Med	60-79	1
9269	Invertebrate	Alpheus villosus	Hairy Pistol Prawn	Alpheidae	DI	3	3 3	1	1 2	2 2	2.14	1	3 1	1 3	1.20	2.46	85	Low	≥80	
9270	Invertebrate	Alpheus lottini	Coral Snapping Shrimp	Alpheidae	DI	3	33	1	1 2	2 2	2.14	1	3 1	1 3	1.20	2.46	85	Low	≥80	
9271	Invertebrate	Processa gracilis	Long-Wristed Shrimp	Processidae	DI	3	3 3	1	1 1	1 1	1.86	1	3 1	1 3	1.20	2.21	91	Low	≥80	
9272	Invertebrate	Paguristes frontalis	Common Hermit crab	Diogenidae	DI	3	3 3	1	1 3	3 1	2.14	1	2 2	2 3	1.28	2.49	84	Low	≥80	
9273	Invertebrate	Austrodromidia octodentata Austrodromidia australis	Southern Sponge Crab	Dromiidae		1	1 3 1 3	1	1 3	2 1 2 1	1.57	2	3	1 3	1.20	2.12	95	Low	280	
9275	Invertebrate	Naxia aurita	Golden Decorator Crab	Majidae	DI	3	3 3	1	1 3	3 1	2.14	1	3	1 3	1.20	2.46	85	Low	≥80	
9276	Invertebrate	Naxia aries	Ramshorn Crab	Majidae	DI	3	3 3	1	1 3	3 1	2.14	1	3 1	1 3	1.20	2.46	85	Low	≥80	

				· · ·			Pro	oductiv	ity Sc	ores [1	1-3]		Susceptibility Sco			ores [1-3]					T
ERA Species ID	Species type	Scientific name	Common name	Family name	Role in fishery	Average age at maturity	Average max age	Fecundity Average max size	Average size at maturity	Reproductive strategy	Trophic level	Total Productivity (average)	Availability	Encounterability	Selectivity Post-capture mortality	Total (multiplicative)	PSA Score	MSC PSA-derived score	Risk Category Name	MSC scoring guidepost	Change in risk
9277	Invertebrate	Gomeza bicornis	Masked Burrowing Crab	Corystidae	DI	3	3	3 1	1	3	1	2.14	3	3	1 3	1.65	2.70	78	Med	60-79	1
9278	Invertebrate	Nectocarcinus integrifrons	Rough Rock Crab	Portunidae	DI	3	3	3 1	1	3	3	2.43	2	3	2 3	1.88	3.07	65	Med	60-79	
9279	Invertebrate	Actaea calculosa	Facetted Crab	Xanthidae	DI	3	3	3 1	1	3	1	2.14	1	3	1 3	1.20	2.46	85	Low	≥80	
9280	Invertebrate	Pilumnidae - undifferentiated	HAIRY CRAB	Pilumnidae	DI	3	3	3 1	1	3	1	2.14	2	3	1 3	1.43	2.57	82	Low	≥80	4
9281	Teleost	Aulopus purpurissatus	Sergeant Baker	Aulopidae	DI	3	3	31	1	1	3	2.14	1	3	3 3	1.65	2.70	78	Med	60-79	4
9282	Teleost	Histiophryne cryptacanthus	Rodless Anglerfish	Antennariidae	DI	3	3	3 1	1	3	3	2.43	1	3	2 3	1.43	2.82	74	Med	60-79	
9283	Teleost	Leviprora inops	Longhead Flathead	Platycephalidae	DI	1	1	1 1	1	1	2	1.14	1	3	3 3	1.65	2.01	95	Low	≥80	
9284	Teleost	Thysanophrys cirronasa	Tasselsnout Flathead	Platycephalidae	DI	1	2	1 1	1	1	3	1.43	2	3	3 3	2.33	2.73	77	Med	60-79	
9285	Teleost	Cynoglossus broadhursti	Southern Tongue Sole	Cynoglossidae	DI	1	1	3 1	1	3	3	1.86	3	3	3 3	3.00	3.53	43	High	<60	
9286	Chondrichthyan	Asymbolus submaculatus	Variegated Catshark	Scyliorhinidae	DI	. 1 .	1	3 1	. 2	2	3	1.86	1	3	3 3	1.65	2.48	85	Low	≥80	
90001	Invertebrate	Lepadidae - undifferentiated	a goose barnacle (not designated)	Lepadidae	DI	3	3	3 1	1	3	3	2.43	1	3	1 3	1.20	2.71	78	Med	60-79	
90002	Invertebrate	Coscinasterias muricata	Eleven-arm Seastar	Asteriidae	DI	3	3	3 1	2	1	3	2.29	1	3	3 3	1.65	2.82	74	Med	60-79	4
90003	Invertebrate	Tosia magnifica	Biscuit Seastar	Goniasteridae	DI	3	3	3 1	1	3	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	
90004	Teleost	Seriolella brama	Blue Warehou	Centrolophidae	TEP	1	2	3 1	1	1	3	1.71	1	3	3 3	1.65	2.38	87	Low	≥80	
90005	Teleost	Ammotretis rostratus	Longsnout Flounder	Pleuronectidae	DI	1	2	31	1	1	2	1.57	1	3	3 3	1.65	2.28	90	Low	≥80	4
90006	Teleost	Heteroclinus heptaeolus	Ogilby's Weedfish	Clinidae	DI	3	3	3 1	1	3	3	2.43	1	3	3 3	1.65	2.94	70	Med	60-79	
90007	Teleost	Torquigener pleurogramma	Weeping Toadfish	Tetraodontidae	DI	2	1	31	1	3	3	2.00	1	3	3 3	1.65	2.59	82	Low	≥80	
90008	Chondrichthyan	Trygonoptera mucosa	Western Shovelnose Stingaree	Urolophidae	DI	3	3	3 1	1	3	3	2.43	2	3	3 1	1.43	2.82	74	Med	60-79	
90009	Teleost	Hypselognathus rostratus	Kinfesnout Pipefish	Syngnathidae	DI	1	1	3 1	1	2	3	1.71	1	3	3 3	1.65	2.38	87	Low	≥80	
90010	Chondrichthyan	Trygonoptera imitata	Eastern Shovelnose Stingaree	Urolophidae	DI	3	3	3 1	2	3	2	2.43	1	3	3 1	1.20	2.71	78	Med	60-79	4
90011	Chondrichthyan	Furgaleus macki	Whiskery Shark	Triakidae	DI	3	2	32	2	3	3	2.57	1	3	3 3	1.65	3.06	65	Med	60-79	4
90012	Chondrichthyan	Orectolobus halei	Gulf Wobbegong	Orectolobidae	DI	3	2	32	2	3	3	2.57	1	3	3 3	1.65	3.06	65	Med	60-79	<u> </u>
90013	Teleost	Neosebastes scorpaenoides	Common Gurnard Perch	Neosebastidae	DI	3	3	3 1	2	1	3	2.29	1	3	3 3	1.65	2.82	74	Med	60-79	4
90014	Invertebrate	Sepia braggi	Bragg's Cuttlefish	Sepiidae	DI	3	3	3 1	1	3	3	2.43	1	3	2 3	1.43	2.82	74	Med	60-79	4
90015	Invertebrate	Octopus kaurna	Southern Sand Octopus	Octopodidae	DI	3	3	3 1	2	3	3	2.57	1	3	3 3	1.65	3.06	65	Med	60-79	4
90016	Invertebrate	Octopus pallidus	Pale Octopus	Octopodidae	DI	3	3	3 1	1	2	3	2.29	1	3	3 3	1.65	2.82	74	Med	60-79	
90024	Mammal	Tursiops truncatus	Common Bottlenose Dolphin	Delphinidae	TEP	2	3	3 3	3	3	3	2.86	1	3	3 3	1.65	3.30	55	High	<60	

Table 7: Additions in species classified as high risk or 'species of interest' from assessment reported in '2014 ESD risk assessment of the Spencer Gulf Prawn Fishery' (pp 78-82) compared to updated assessment. (NOTE: no species classified as high risk in the '2014 ESD risk assessment of the Spencer Gulf Prawn Fishery' dropped to a lower category in the updated PSA)

Scientific name	Common name	Classification Change
Sardinops sagax	Australian Sardine	Risk increased to High
Leptoichthys fistularius	Brushtail Pipefish	Added to species of interest
Phycodurus eques	Leafy Seadragon	Added to species of interest
Phyllopteryx taeniolatus	Common Seadragon	Added to species of interest
Stigmatopora argus	Spotted Pipefish	Added to species of interest
Hyporhamphus melanochir	Southern Garfish	Added to species of interest
Portunus armatus	Blue Swimmer Crab	Added to species of interest*
Sillaginodes punctata	King George Whiting	Removed as separate management programs
Pagrus auratus	Snapper	Removed as separate management programs

*Blue Swimmer Crab was recognised as a species of interest in the '2014 ESD risk assessment of the Spencer Gulf Prawn Fishery' but not included in the table of species of high risk or interest.

Table 8: CSA undertaken by SARDI.

Only	main habitats scor	ed?	Yes						Conse	quend	e scor	re [1-3]			Spa	tial sc	ore [0.	5-3]				
Habitat details			Hal produ	oitat Ictivity	Ge	ear-hal	bitat in	teracti	on	core	٦t	đ	≩	a		ived	X	0				
Scoring element	UoA/Gear type	Biome	Sub- biome	Feature	Habitat type	Depth (m)	Regeneration of biota	Natural disturbance	Removability of biota	Removability of substratum	Substratum hardness	Substratum ruggedness	Seabed slope	Consequence s	Gear footpri	Spatial overl	Encounterabi	Spatial scor	CSA score	MSC CSA-der score	Risk categor	MSC scorin guidepost
1	SGPF/Demersal trawl	Coast/ Shelf	Coastal margin/ Inner shelf	Sediment plains	Fine (mud, sand); flat (simple surface structure); biota dominated by mixed small/low-encrusting invertebrate communities	10-60 m	1	1	1	3	3	3	1	1.67	3	3	2.5	2.82	3.28	62	Med	60-79

Fig. 1: General ecosystem component tree for the Spencer Gulf Prawn Fishery. For explanation of colour-coded risk categories see page 28 of the '2014 ESD risk assessment of the Spencer Gulf Prawn Fishery'.

• The only component changed from the '2014 ESD Risk Assessment of the Spencer Gulf Prawn Fishery' was the score in the component tree for "Oil Spills", which is changed from 'moderate' to 'low'.

Consequence: 3, Likelihood: 1, Risk rating 3 (Low)

- Consequence of an oil spill occurring were considered less severe, as prawn vessels generally carry low volumes of oil.
- Likelihood of an oil spill was considered low given measures and procedures in place to prevent event and there has been no record of an oil spill from a prawn vessel.

Fig: 2. External impacts component tree for the Spencer Gulf Prawn Fishery.

The following changes to the 'external impacts on industry' component tree were made from the component tree in the '2014 ESD Risk Assessment of the Spencer Gulf Prawn Fishery'.

Under the subheading of access, the following issues were added:

Cumulative closures

Consequence: 3, Likelihood: 5, Risk Rating (Low)

- Cumulative impact of closures on the fishery's operations (economic and ecological). Closures include self-imposed closures, marine parks, aquaculture zoning, defense areas and fisheries closures for other species.
- Due to the increasing number of closures there is a risk the cumulative effect reduces the fishing area available to operate in, which either reduces harvestable areas or displaces the fleet to currently low fished areas.
- Identification of the cumulative impact identifies the financial and ecological risks to the fishery.

Interactions with other fisheries' management strategies

Consequence: 3, Likelihood: 6, Risk Rating (High)

- As the prawn fishery overlaps with other fisheries, the management strategies and arrangements applied in other fisheries may impact on the prawn fishery.
- Closures can have an impact on fishing operations.
- It is likely spatial closures are used to manage other fisheries.
- The consequence on the prawn fishery are both financial and subsequently the impacts of the fishery on the ecosystem.

Under the subheading of anthropogenic following issues were added:

Single point pollution

No consequence or likelihood rating provided

- A single pollution source could impact juvenile habitat and affect recruitment, either through direct acute toxic impacts or indirectly though habitat modification.

Ocean acidification

No consequence or likelihood rating provided

- Can have an impact on juveniles or morphology of adults, impacting on their mortality.

Heat wave events

No consequence or likelihood rating provided

- Fish die off events are increasing in frequency, extended periods of hot weather may have direct impacts on species or indirectly through algal blooms.
- The impact of heat waves or resultant algae blooms on prawn species is unknown.

Under the subheading of anthropogenic following issues were modified:

<u>Sewage</u>

Consequence: 2, Likelihood: 4, Risk Rating (Moderate)

- In 2014 ESD Risk Assessment sewage was not rated.
- Identified through EPA habitat assessment reports sewage is a cause of habitat decline in some areas
- Concern was related to habitat quality for juvenile prawns in the littoral zone.

Agricultural runoff

Consequence: 2, Likelihood: 4, Risk Rating (Moderate)

- In 2014 ESD Risk Assessment agricultural runoff was not rated.
- Identified through EPA habitat assessment reports
- Concern was related to habitat quality for juvenile prawns in the littoral zone.

Stormwater

Consequence: 2, Likelihood: 4, Risk Rating (Moderate)

- Large single event may have a significant impact on ecosystem/ juvenile prawn recruitment.

Illegal marine dumping

Consequence: 2, Likelihood: 4, Risk Rating (Moderate)

- Illegally dumped gear can impact directly on the safety of vessels, given the risk of hookups.
- While consequence is minor likelihood is possible.
- Risk categorization as moderate needs to be identified.
- Reefs alter the ecosystems diversity in a given area.

Coastal development/ habitat impact

Consequence 3, Likelihood 3, Risk Rating (Low)

- Habitat modification may impact on recruitment to the fishery and ecosystem.

<u>Dredging</u>

Consequence: 3, Likelihood: 3, Risk Rating (Low)

- Impact on habitat and species directly.

Commercial shipping oil spill

Consequence: 3, Likelihood: 1, Risk Rating (Low)

- Impact of commercial shipping oil spill has occurred in the past, will lasting impact on recruitment to the fishery.
- The likelihood is low due to no recorded spills and the consequence is high (3) reflective of the potential volume that could be lost from a boat having lower consequences than previously assessed.
- Consequence changed from moderate to low

Exotic Species

Consequence 3, Likelihood 3, Risk Rating (Moderate)

- Increased from low to moderate.
- Exotic species can impact on the marine ecosystem and its ecosystem services, affecting the fishery.

Performance reports

PSA Analysis

Where a target, by-product or by-catch species was classified in the review of the 2014 as a high risk species or a species of interest unique to the 2014 assessment, performance reports were developed to address this risk. All other target, by-product or by-catch species classified as a high risk species, or species of interest, the previous performance report (PIRSA 2014) is considered to still apply.

Table 9: Performance Report for new High risk and 'species of interest' species

Species scientific name	Common name	Risk/ Importance	Notes				
Sardinops sagax	Australian Sardine	High risk	Stock assessment program for Australian Sardine – consistent with discussions around King George Whiting and Snapper, no additional management actions required.				
Leptoichthys fistularius	Brushtail Brushtail rius Pipefish						
Phycodurus eques	Leafy Seadragon	Species of interest	TEPS species – by-catch program in place for TEPS				
Phyllopteryx taeniolatus	Common Seadragon	Species of interest	species, both through survey and commercial fishin industry is proactive in voluntarily closing areas kno				
Stigmatopora argus	Spotted Pipefish	Species of interest	or likely to include preferred habitat of sygnathids.				
Hyporhamphus melanochir	Southern Garfish	Species of interest					
Tursiops truncatus	Common Bottlenose Dolphin	High	Monitor interactions with TEPS through Wildlife Interaction Logbooks annually				

Table 10: Performance Report for other High and Moderate Risks

Component	Risk/Issue	Description	Risk/ Importance	Objective	Strategies
	Interactions with other fisheries management strategies		High		Collect fishery-dependent information through commercial logbooks. Maintain the fishery-independent prawn survey program. Assess the status of the stock through the quantitative stock assessment. Collect appropriate environmental data to aid assessment.
	Anthropogenic, water quality, sewage		Moderate		Collect appropriate environmental data to aid assessment.
External	Anthropogenic, water quality, Agricultural run-off	The risk of external factors impacting on the fishery	Moderate	Collect appropriate environmental data to aid assessment.	
Impacts on industry	Anthropogenic, water quality, storm water		Moderate	Collect appropriate environmental data to aid assessment.	
	Illegal marine dumping		Moderate		Collect appropriate environmental data to aid assessment.
	Exotic species		Moderate		Collect fishery-dependent information through commercial logbooks. Maintain the fishery-independent prawn survey program. Assess the status of the stock through the quantitative stock assessment. Collect appropriate environmental data to aid assessment.

References

Baker JL (2015). Marine Assets of Yorke Peninsula. Volume 2 of report for Natural Resources - Northern and Yorke, South Australia.

Burnell OW, Barrett SL, Hooper GE, Beckmann CL, Sorokin SJ & Noell CJ (2015). Spatial and temporal reassessment of by-catch in the Spencer Gulf prawn fishery. Report to PIRSA Fisheries and Aquaculture. Adelaide: South Australian Research and Development Institute (Aquatic Sciences). SARDI Publication No. F2015/000414-1, SARDI Research Report Series No. 854.

Currie DR, Dixon CD, Roberts SD, Hooper GE, Sorokin SJ & Ward TM (2009). Fishery-independent bycatch survey to inform risk assessment of the Spencer Gulf prawn trawl fishery. Report to PIRSA Fisheries. Adelaide: South Australian Research and Development Institute (Aquatic Sciences). SARDI Publication No. F2009/000369-1, SARDI Research Report Series No. 390.

Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A. D. M. & Whitworth, B. (2002). National ESD reporting framework for Australian fisheries: the 'how to' guide for wild capture fisheries. FRDC Project 2000/145. Fisheries Research and Development Corporation, Canberra.

Fletcher, W. J., Sainsbury, K. J., Fisher, M. & Hundloe, T. (2005). A flexible and practical framework for reporting on ecologically sustainable development for wild capture fisheries. Fisheries Research 71, 175–183.

Hobday A, Smith A, Webb H, Daley R, Wayte S, Bulman C, Dowdney J, Williams A, Sporcic M, Dambacher J, Fuller M & Walker T (2007). Ecological risk assessment for the effects of fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority.

Hobday AJ, Smith ADM, Stobutzki IC, Bulman C, Daley R, Dambacher JM, Deng RA, Dowdney J, Fuller M, Furlani D, Griffiths SP, Johnson D, Kenyon R, Knuckey IA, Ling SD, Pitcher R, Sainsbury KJ, Sporcic M, Smith T, Turnbull C, Walker TI, Wayte SE, Webb H, Williams A, Wise BS & Zhou S (2011). Ecological risk assessment for the effects of fishing. *Fisheries Research* **108**, 372–384.

Jones AR, Doubleday ZA, Prowse TA, Wiltshire KH, Deveney MR, Ward T, Scrivens SL, Cassey P, O'Connell LG & Gillanders BM (2018). Capturing expert uncertainty in spatial cumulative impact assessments. *Scientific Reports* **8**, 1469–1481.

Kämpf J, Brokensha C & Bolton T (2009). Hindcasts of the fate of desalination brine in large inverse estuaries: Spencer Gulf and Gulf St. Vincent, South Australia. *Desalination and Water Treatment* **2**, 325–333.

MSC (2018a). MSC Fisheries Standard. Version 2.01, 31 August 2018. London: Marine Stewardship Council. 12

MSC (2018b). MSC Fisheries Certification Process. Version 2.1, 31 August 2018. London: Marine Stewardship Council.

MSC (2018c). MSC Guidance to the Fisheries Certification Process. Version 2.1, 31 August 2018. London: Marine Stewardship Council.

Noell CJ (2017). Determining the trawl footprint of the Spencer Gulf prawn fishery. Report to PIRSA Fisheries and Aquaculture. Adelaide: South Australian Research and Development Institute (Aquatic Sciences). SARDI Publication No. F2016/000565-1, SARDI Research Report Series No. 939.

Nunes RA & Lennon GW (1986). Physical property distributions and seasonal trends in Spencer Gulf, South Australia: an inverse estuary. *Australian Journal of Marine and Freshwater Research* **37**, 39–53.

O'Connell LG, James NP, Doubell M, Middleton JF, Luick J, Currie DR & Bone Y (2016). Oceanographic controls on shallow-water temperate carbonate sedimentation: Spencer Gulf, South Australia. *Sedimentology* **63**, 105–135.

PIRSA (2014a). Management Plan for the South Australian Commercial Spencer Gulf Prawn Fishery. Primary Industries and Regions South Australia Adelaide.

PIRSA (2014b). ESD risk assessment of South Australia's Spencer Gulf prawn fishery: incorporating the national ecologically sustainable development (ESD) reporting framework and the ecological risk assessment for effects of fishing (ERAEF) on species components. Adelaide: Primary Industries and Regions South Australia.

Williams A, Dowdney J, Smith A, Hobday A, Fuller M (2011). Evaluating impacts of fishing on benthic habitats: a risk assessment framework applied to Australian fisheries. *Fisheries Research* **112**, 154–167.

Appendices APPENDIX 1: CONDUCTING THE CONSEQUENCE SPATIAL ANALYSIS (CSA)

DEFINING THE HABITAT (STEP 1)

The main habitat type(s) commonly encountered by the SGPF was determined by examining the spatial overlap between: (1) broad-scale marine benthic habitats (Suppl. Fig. S1 in Jones et al. 2018); (2) sedimentary facies (Fig. 8 in O'Connell et al. 2016) in Spencer Gulf; and (3) each trawl intensity category within the fishery's trawl footprint (based on effort from 2001/02–2018/19 using the density-derived method described in Noell 2017) (Fig. A1). Areas of low (0.5–1 h km⁻² yr⁻¹) and medium (1–10 h km⁻² yr⁻¹) trawl intensity predominantly comprises subtidal soft habitat (87% and 76%, respectively), which mostly consists of mixed skeletal sand (69% and 64%) (Table A1). The area of high trawl intensity (>10 h km⁻² yr⁻¹) comprises subtidal soft (60%) and seagrass habitat (32%), each of which consist mostly of rhodolith ¹gravelly sand (74% and 93%, respectively) (Table A1). When compared to the trawl footprint total area, most of the area is occupied by subtidal soft habitat (77%), the proportion of seagrass diminishes (to 16%), and the sedimentary facies consists of either mixed skeletal sand (49%) or rhodolith gravelly sand (26%) (Table A1).

Although the overlap between the benthic habitat map and the trawl footprint has been quantified, the values are not absolute. The benthic habitat map represents the collation of available spatial data from several sources; however, these data varied in resolution and collection method, which can introduce uncertainty into the resulting map (Jones et al. 2018). Nevertheless, the overlap of the benthic habitat map and the trawl footprint is considered appropriate for broadly identifying the main habitat trawled by the SGPF and conducting the CSA.

Based on the predominant habitat and sedimentary characteristics, and when matched to nomenclature used by the MSC to define habitat in terms of substratum, geomorphology and characteristic biota, one main habitat type was identified. The SGPF operates in the benthic zone with substrate consisting of fine sandy or muddy sediment (Table A2). The geomorphology of this environment is generally flat, with simple surface structure and mixed small/low-encrusting invertebrate communities (Table A2). The main habitat type commonly encountered by the SGPF can therefore be abbreviated as 'Fine-Flat-Small encrusting'.

¹ Rhodolith beds are made up of both living and dead unattached nodules of crustose coralline algae, which are sometimes called 'popcorn' by fishers. Rhodolith beds have important ecological roles as they often host a high biodiversity of organisms through attachment or providing spaces to live in (Baker 2015).

Fig. A1. Average trawl intensity of the SGPF from 2001/02–2018/19, and benthic habitat (Jones et al. 2018) and sedimentary facies (O'Connell et al. 2016) of Spencer Gulf.

				ç	Sedimentary Facies	S			
Intensity	Benthic Habitat	Mixed Skeletal	Bivalve/Bryozoan	Mixed Skeletal	Rhodolith	Rhodolith Muddy	Bivalve Gravelly	Bivalve Sandy	Total
		Sand	Gravelly Sand	Muddy Sand	Gravelly Sand	Gravel	Sand	Mud	
High	Seagrass	2	0	2	139	3	2	2	150
	Subtidal Rocky	0	0	0	39	0	0	0	39
	Subtidal Soft	43	0	0	212	0	15	16	287
Moderate	Seagrass	46	0	33	167	15	89	84	433
	Subtidal Rocky	4	0	0	258	0	0	0	262
	Subtidal Soft	1450	150	75	263	28	108	177	2250
Low	Seagrass	23	0	18	20	4	38	17	119
	Subtidal Rocky	2	0	0	21	0	0	0	23
	Subtidal Soft	660	96	60	42	10	31	61	960
Negligible	Intertidal Soft (Unvegetated)	7	0	1	0	0	6	0	14
	Intertidal Rocky	13	0	26	0	0	119	96	254
	Mangrove	0	0	9	0	0	36	32	77
	Saltmarsh	2	0	7	0	0	20	10	37
	Seagrass	1054	57	1235	502	367	1579	1318	6113
	Subtidal Rocky	483	61	35	337	17	103	9	1044
	Subtidal Soft	5549	2135	364	377	384	536	781	10125
	Total	9337	2498	1864	2377	827	2681	2602	22184
High	Seagrass	2	0	2	139	3	2	2	150
	Subtidal Rocky	0	0	0	39	0	0	0	39
	Subtidal Soft	43	0	0	212	0	15	16	287
Moderate	Seagrass	46	0	33	167	15	89	84	433
	Subtidal Rocky	4	0	0	258	0	0	0	262
	Subtidal Soft	1450	150	75	263	28	108	177	2250
Low	Seagrass	23	0	18	20	4	38	17	119
	Subtidal Rocky	2	0	0	21	0	0	0	23
	Subtidal Soft	660	96	60	42	10	31	61	960
	Total	2229	246	187	1161	60	283	356	4521

Table A1. Area of overlap (km²) between benthic habitat and sedimentary facies for each trawl intensity category of the SGPF. Shaded bars indicate the predominance of habitat-sediment combination by trawl intensity category (colour) and total trawl footprint (i.e. sum of low, moderate and high intensity) (black).

Table A2. Habitat nomenclature (Table PF9, MSC 2018b). Shaded text indicate characteristics of the main habitat type within the trawl footprint of the SGPF.

Substratum	Geomorphology	Biota
 Fine (mud, sand) Mud (0.1 mm) Fine sediments(0.1–1 mm) Coarse sediments (1–4 mm) 	 Flat Simple surface structure Unrippled/flat Current rippled/directed scour Wave rippled 	 Large erect Dominated by: Large and/or erect sponges Solitary large sponges Solitary sedentary/sessile epifauna (e.g. ascidians/ bryozoans) Crinoids Corals Mixed large or erect communities
Medium Gravel/pebble (4-60 mm) 	 Low relief Irregular topography with mounds and depressions Rough surface structure Debris flow/rubble banks 	 Small erect/encrusting/burrowing Dominated by: Small, low-encrusting sponges Small, low-standing sponges Consolidated (e.g. mussels) and unconsolidated bivalve beds (e.g. scallops) Mixed small/low-encrusting invertebrate communities Infaunal bioturbators
 Large Cobble/boulders (60 mm–3 m) Igneous, metamorphic, or sedimentary bedrock (>3 m) 	 Outcrop Subcrop (rock protrusions from surrounding sediment <1 m) Low-relief outcrop (<1 m) 	 No fauna or flora No apparent epifauna, infauna, or flora
 Solid reef of biogenic origin Biogenic (substratum of biogenic calcium carbonate) Depositions of skeletal material forming coral reef base 	 High relief High outcrop (protrusion of consolidated substrate >1 m) Rugged surface structure 	Flora Dominated by: • Seagrass species

Classifying the biome, sub-biome and their features

The biomes, sub-biomes, features and their associated depths emphasis the differences that exist in the fauna and life-history characteristics between depth zones and provide a way to estimate the spatial extent of the habitat(s) (MSC 2018c). The spatial overlap between the trawl footprint and bathymetry of the gulf indicate that half of the footprint is within the coastal margin (in depths 10–25 m), while the other half is on the inner shelf (in depths 25–60 m) (Table A3). The features of these sub-biomes are of the sediment plains type (Table A3).

Table A3. List of biomes, sub-biomes and features (Table PF10, MSC 2018b). Shaded text indicate characteristics relevant to the trawl footprint of the SGPF.

Government of South Australia

Biome	Sub-biome	Feature
Coast (0-25 m)	Coastal margin (<25 m)	Seamounts
Shelf (25-200 m)	Inner shelf (25-100 m)	Canyons
Slope (200-2,000 m)	Outer shelf (100-200 m)	Abyss
Abyss (>2,000 m)	Upper slope (200-700 m)	Shelf break (~150–300 m)
	Mid-slope (700-1,500 m)	Sediment plains
		Sediment terraces
		Escarpments
		Plains of scattered reef
		Large rocky banks

SCORING THE CONSEQUENCE ATTRIBUTES (STEP 2)

The seven consequence attributes are divided into two groups: habitat-productivity attributes (2) and gear-habitat interaction attributes (5) (Table A4). The overall consequence score is the weighted arithmetic mean of all seven attributes, with individual scores for the habitat-productivity attributes multiplied by 2 to reflect their increased importance.

Table A4. Consequence and spatial attributes for the CSA.

Consequence attributes	Spatial attributes
Habitat productivity	1. Gear footprint
1. Regeneration of biota	2 . Spatial overlap
2. Natural disturbance	3. Encounterability
Gear-habitat interaction	
Removability of biota	
4. Removability of substratum	
5. Substratum hardness	
6. Substratum ruggedness	
7. Seabed slope	

Habitat productivity

Regeneration of biota

Biotas have different intrinsic rates of growth, reproduction and regeneration, which are also variable in different conditions of temperature, nutrients and productivity. Because habitat depth has an influence on these conditions, it is considered an appropriate proxy for regeneration of biota (MSC 2018c). Further, the type of biota is relevant due to different growth rates. In the absence of specific data on biota regeneration, as is the case for the SGPF, the predominance of small encrusting biota throughout the trawl footprint indicates that a score of **1** should be assigned to this attribute (Table A5).

Table A5. Scoring regeneration of biota based on age, growth and recolonization of biota (Table PF12, MSC 2018b).

Sub-biome			Using avail	able data		Using surrogate when data are not available			
Annual	Less than decadal	More deca	e than adal	No epifauna	Small erect/ encrusting	Large erect (sponges)	Large erect (ascidians and bryozoans)	Seagrass communitie s/ mixed faunal communitie s/ hard corals	Crinoids/ solitary/mix ed communitie s/ hard and soft corals
Coastal margin (<25 m)	1	2	3	1	1	1	1	2	1
Inner shelf (25- 100 m)	1	2	3	1	1	2	2	2	2
Outer shelf (100-200 m)	1	2	3	1	1	3	2	3	3
Úpper slope (200- 700 m)	1	2	3	1	1	3	3	3	3
Mid-slope (700-	1	2	3	1	2	3	3	3	3

1,500 m)

increase towards the head of the gulf (Nunes and Lennon 1986). Inverse estuaries are characterised by an outflow of dense, saline water in bottom layers and an inflow of oceanic water in surface layers. In Spencer Gulf, this density-driven circulation is influenced by the earth's rotation, such that the dense

saline outflows occur along the eastern side, whereas surface inflows occur along the western side (Kämpf et al. 2009).

Although the maximum depth of Spencer Gulf is 87 m (at its entrance in the south), the entire trawl footprint occurs in depths 10–60 m. Therefore, a score of **1** is assigned to this attribute (Table A6).

Table A6. Scoring natural disturbance (Table PF13, MSC 2018b).

Attribute		Score	
1	2	3	
Natural	Regular or severe	Irregular or	No natural
disturbance	natural disturbance	moderate natural disturbance	disturbance
Natural disturbance (in absence of information)	Coastal margin and shallow inner shelf (<60 m)	Deep inner shelf and outer shelf (60-200 m)	Slope (>200 m)

Gear-habitat interaction

Removability of biota

Removability of biota is influenced by the size, height, robustness, flexibility and structural complexity of the biota. Large, erect, inflexible or delicate biota are more susceptible to physical damage than small, low, flexible, robust or deep-burrowing biota (MSC 2018c). Given that the biota associated with the trawl footprint predominantly consists of mixed small/low-encrusting invertebrate communities, and that demersal trawl is exclusively used by the SGPF, a score of **1** is assigned to this attribute (Table A7).

Removability of substratum

This attribute relates to how susceptible the substratum is to removal by the fishing gear. For example, substrata that comprise large bedrock and boulders are highly resistant to impact. Although soft sediment is less resistant to impact, it is generally more resilient because it accumulates relatively rapidly and is altered by burrowing fauna (MSC 2018c). Nevertheless, given the high likelihood of removability, it is considered high risk. Since the substratum of the Fine-Flat-Small encrusting habitat encountered by the SGPF predominantly comprises fine sandy or muddy sediment, and that this substratum is exposed to demersal trawling throughout the trawl footprint, a score of **3** is assigned to this attribute (Table A7).

Table A7. Scoring the removability of biota and substratum attributes (Table PF14, MSC 2018b).Gear typeRemovability of biotaRemovability of biotaRemovability of substratum

Low, robust, small (<5 cm), smooth, or flexible biota OR robust, deep- burrowing biota	а	Erect, medium (<30 cm), moderately rugose, or inflexible biota OR moderately robust, shallow- burrowing biota	Tall, delicate, large (>30 cm high), rugose, or inflexible biota OR delicate, shallow- burrowing biota	Immovable (bedrock and boulders >3 m)	<6 cm (transferable)	6 cm–3 m (removable)
Hand	1	1	1	1	1	2
Collection Demersal Iongline	1	1	2	1	1	1
Handline	1	1	2	1	1	1
Trap	1	2	2	1	1	1
Bottom gill net or other entangling net	1	2	3	1	1	1
Danish seine	1	2	3	1	2	3
Demersal trawl (including pair, otter twin-rig, and otter multi- rig)	1	3	3	1	3	3
Dredge	3	3	3	1	3	3

Substratum hardness

Substratum hardness considers whether the seabed is likely to degrade when it is interacted by the fishing gear (MSC 2018c). Unlike hard rocky substratum, which is intrinsically more resistant to impact, the fine sandy and muddy sediment throughout the trawl footprint of the SGPF is less resistant to impact. Therefore, a score of **3** is assigned to this attribute (Table A8).

Substratum ruggedness

Substratum ruggedness is based on the concept that accessibility of the fishing gear to the habitat is related to the ruggedness of the substratum (MSC 2018c). The geomorphology of the seabed throughout the trawl footprint of the SGPF is considered to primarily flat with simple surface structure, making it highly accessible. Therefore, a score of **3** is assigned to this attribute (Table A8).

Table A8. Scoring the substratum hardness and ruggedness attributes (Table PF15, MSC 2018b). Substratum hardness Substratum ruggedness Gear type High relief (>1 Hard (igneous, Soft (lightly Sediments Low relief (<1.0 Flat, simple sedimentary, or consolidated, (unconsolim), high m), rough surface heavilv weathered. or dated) outcrop, or surface structure consolidated biogenic) rugged surface structure (mounds, (rubble, small rock types) structure undulations, (cracks, boulders, rock ripples), current crevices, edges), rippled, wave

				overhangs, large boulders, rock walls)	subcrop, or low outcrop	rippled, or irregular
Hand collection	1	2	3	3	3	1
Demersal longline	1	2	3	2	3	3
Handline	1	2	3	2	3	3
Trap	1	2	3	2	3	3
Bottom gill net or other entangling net	1	2	3	2	3	3
Danish seine	1	2	3	1	1	3
Demersal trawl (including, pair, otter twin-rig, and otter multi- rig)	1	2	3	1	3	3
Dredge	1	2	3	1	1	3

Seabed slope

The seabed slope attribute considers that the impact of the fishing gear on the habitat concerning mobilisation of the substratum is influenced by slope (MSC 2018c). The seabed of the coastal margin and inner shelf waters in which the SGPF operates (depths of 10–60 m) is largely characterised as flat, low-degree (<1) plains with simple, homogeneous surface structure. Due to these characteristics of the seabed slope, a score of **1** is assigned to this attribute (Table A9).

Table A9. Scoring the seabed	slope attributes (Table PF15, M	ISC 2018b).
Gear type	Seabed slope	
Low degree (<1):	Medium degree (1- 10):	High degree (>10):
Plains in coastal margin, inner or outer shelf or mid-slope OR terraces in mid-slope OR rocky banks/fringing reefs in coastal margin, inner or outer shelf, or upper or mid-slope	Terraces in outer shelf or upper slope	Canyons in outer shelf, or upper or mid-slope OR seamounts/bioherms in coastal margin, inner shelf, or upper or mid- slope
Hand collection 1	2	3
Demersal longline 1	2	3
Handline 1	2	3

Trap	1	2	3
Bottom gill net or other entangling net	1	2	3
Danish seine	1	2	3
Demersal trawl (including, pair, otter twin-rig, and otter multi-rig)	1	2	3
Dredge	1	2	3

SCORING THE SPATIAL ATTRIBUTES (STEP 3)

The spatial score is the geometric mean of the three spatial attributes (Table A4).

Fishing gear footprint

Interpretation of fishing gear footprint, as one of the three spatial attributes for the CSA, differs to that for trawl footprint. The trawl footprint of the SGPF is a cumulative estimate of total area impacted by trawling over a specified timeframe, whereas the fishing gear footprint reflects the relative impact of the gear on the habitat it encounters, and is considered in terms of gear size, weight and mobility (MSC 2018c). According to the MSC Standard (2018a), only a single encounter is needed using a demersal trawl to cause an impact. Therefore, a score of **3** is assigned to this attribute (Table A10).

Table A10. Scoring the gear footprint attributes (Table PF16, MSC 2018b).

Gear type	Gear footprint score
Hand collection	1
Handline	1
Trap	1
Demersal longline	2
Bottom gill net or other entangling net	2
Danish seine	2
Demersal trawl (including pair, otter twin-rig, and otter multi-rig)	3
Dredge	3

Spatial overlap

Spatial overlap is defined as the overlap between a habitat's range and the UoA's fishing area within the 'managed area' (MSC 2018c). In this case, the Fine-Flat-Small encrusting habitat (≈ subtidal soft habitat) occupies 77% of the SGPF's trawl footprint. Therefore, a score of **3** is assigned to this attribute (Table A11).

Encounterability

Encounterability is a measure of the likelihood of the fishing gear encountering the main habitat. In the absence of a specific measure, encounterability was estimated as the mean spatial overlap within the trawl footprint, weighted by the proportion of effort across the trawl intensity categories. Accordingly, spatial overlaps between Fine-Flat-Small encrusting habitat and high, moderate and low intensity areas of 60%, 76% and 87%, respectively (Table 1), were weighted by factors of 0.49, 0.48 and 0.03 to yield an overall encounterability of 69%. Based on this proxy measure of encounterability, a score of **2.5** is assigned to this attribute (Table A11).

Table A11. Scoring spatial attributes (Table PF17, MSC 2018b).

Spatial attrib	ute		Score			
0.5	1	1.5	2	2.5	3	
Spatial overlap	UoA overlap with a habitat is ≤15%	UoA overlap with a habitat is ≤30%	UoA overlap with a habitat is ≤45%	UoA overlap with a habitat is ≤60%	UoA overlap with a habitat is ≤75%	UoA overlap with a habitat is >75%
Encountera bility	Likelihood of	Likelihood of	Likelihood of	Likelihood of	Likelihood of	Likelihood of

\sim			\sim		
()	⊢⊦	- 10		A I	L
\sim			<u> </u>		

encounter-	encounter-	encounter-	encounter-	encounter-	encounter
ability is					
≤15%	≤30%	≤45%	≤60%	≤75%	>75%

DETERMINING THE CSA AND MSC SCORES (STEP 4)

Using the MSC RBF Worksheets, aggregated consequence and spatial scores were combined into a CSA score, which was then converted into an equivalent MSC score. As a result, an MSC score of 62 was obtained for Fine-Flat-Small encrusting habitat. This falls within the **Medium** risk category and scoring guidepost of 60–79 (Table 6).

APPENDIX 2: CONSEQUENCE AND LIKELIHOOD TABLES

Consequence

Level	Ecological
Negligible (0)	Very insignificant impacts – unlikely to be even measurable at the scale of the stock/ecosystem/ community against natural background variability
Minor (1)	Possibly detectable but minimal impact on structure/function or dynamics
Moderate (2)	Maximum appropriate/acceptable level of impact (e.g. full exploitation rate for a target species)
Severe (3)	This level will result in wider and longer term impacts now occurring (e.g. recruitment overfishing)
Major (4)	Very serious impacts now occurring with relatively long timeframe likely to be needed to restore to an acceptable level
Catastrophic (5)	Widespread and permanent/irreversible damage or loss will occur – unlikely to ever be fixed (e.g. extinctions)

Likelihood

Level	Descriptor
Likely (6)	It is expected to occur
Occasional (5)	May occur
Possible (4)	Some evidence to suggest this is possible here
Unlikely (3)	Uncommon, but has been known to occur elsewhere
Rare (2)	May occur in exceptional circumstances
Remote (1)	Never heard of, but not impossible